
FLORIDA STATE UNIVERSITY

COLLEGE OF ARTS AND SCIENCES

PROBABILISTIC METHODS IN ESTIMATION AND PREDICTION OF FINANCIAL

MODELS

By

NGUYET THI NGUYEN

A Dissertation submitted to the
Department of Mathematics
in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Degree Awarded:
Summer Semester, 2014

Copyright c© 2014 Nguyet Thi Nguyen. All Rights Reserved.

Nguyet Thi Nguyen defended this dissertation on July 10, 2014.
The members of the supervisory committee were:

Giray Ökten

Professor Directing Dissertation

Lois Hawkes

University Representative

Bettye Anne Case

Committee Member

Kyounghee Kim

Committee Member

Warren Nichols

Committee Member

Jinfeng Zhang

Committee Member

The Graduate School has verified and approved the above-named committee members, and certifies
that the dissertation has been approved in accordance with university requirements.

ii

I dedicate this dissertation to my family.

iii

ACKNOWLEDGMENTS

First of all, I sincerely thank my advisor, professor Giray Ökten. His endless effort to support me

is absolutely crucial for me to complete this dissertation. He is not only a great research director,

but also an amazing career mentor. I am lucky to work with him for the last four years and what

I have learned from him will definitely be very helpful for my future career.

I would also like to thank professors: Lois Hawkes, Bettye Anne Case, Jinfeng Zhang, Warren

Nichols, and Kyounghee Kim, for serving on my committee and assisting me in any way I needed.

During my studying time at Florida State University, I received valuable encouragement and

help from many professors and friends. I would like to thank professor Case for encouraging and

supporting me since I just came to the mathematics department. I wish to thank faculty members:

Warren Nichols, David Kopriva, Penelope Kirby, and Annette Blackwelder they have supported

me and given me the inspiration to be a good teacher. I thank Dr. John Burkardt, Department

of Scientific Computing, for the inverse transformation codes, and my classmate Linlin Xu, for his

fast random start Halton codes used in this dissertation. I also would like to thank all of my friends

who gave me their hands whenever I needed help.

Last, but not least, I would like to thank my whole family. Without their support, it would

have been impossible for me to finish my dissertation. The completion of my study at Florida State

University is an achievement of all my family members: my husband Dr. Huan Tran; my daughters

Minh Tran and Nina Tran; my parents Binh Nguyen and Chi Hoang; my parents in law Dr. Bien

Tran and Yen Mai; and my brother Huyen Tran.

iv

TABLE OF CONTENTS

List of Tables . vii

List of Figures . viii

Abstract . ix

1 Introduction 1
1.1 Monte Carlo methods . 1
1.2 Quasi-Monte Carlo methods . 2

1.2.1 Uniform distribution modulo 1 . 2
1.2.2 Discrepancy . 4
1.2.3 Error bounds for QMC . 5
1.2.4 Examples of low-discrepancy sequences . 5

1.3 Randomized quasi-Monte Carlo . 7
1.3.1 Random-start Halton sequences . 8
1.3.2 Scrambled (t,m, s)-nets and (t, s)-sequences 9
1.3.3 Random shifting . 9

1.4 Monte Carlo methods in computational finance . 10
1.5 Markov chains . 12

2 The acceptance-rejection method for low-discrepancy sequences 14
2.1 Introduction . 14
2.2 The acceptance-rejection algorithm . 15
2.3 Error bounds . 19

2.3.1 MC-QMC integration of BVHK and UBVHK functions 19
2.3.2 Error bounds for QMC with uniform point sets 20
2.3.3 Error bounds for RQMC methods . 21

2.4 Smoothing . 23

3 Generating distributions using the acceptance-rejection method 27
3.1 Introduction . 27
3.2 Generating normal distribution . 27
3.3 Generating beta distribution . 30

3.3.1 Beta, B(α, β), max(α, β) < 1 . 31
3.3.2 Beta, B(α, β), min(α, β) > 1 . 33

3.4 Generating the gamma distribution . 35
3.4.1 Gamma, G(α, 1) with α > 1 . 37
3.4.2 Gamma, G(α, 1) with α < 1 . 38

4 The variance gamma model in derivative pricing 41
4.1 Variance gamma process . 41

4.1.1 Brownian motion . 41
4.1.2 Gamma process . 42

v

4.1.3 Variance gamma as time-changed Brownian motion 42
4.1.4 Variance gamma as the difference of two gamma processes 43

4.2 Simulating the variance gamma process . 44
4.2.1 Sequential sampling . 44
4.2.2 Bridge sampling . 45

4.3 The variance gamma model in option pricing . 47
4.4 MC and QMC methods in option pricing . 48
4.5 Bounds on the stock price process . 49
4.6 Bounds on the option price . 51
4.7 Results . 51

5 Hidden Markov models 55
5.1 Introduction . 55

5.1.1 Elements of an hidden Markov model . 55
5.1.2 Three problems . 56

5.2 Algorithms . 57
5.2.1 Forward algorithm . 57
5.2.2 Backward Algorithm . 57
5.2.3 The Viterbi algorithm . 58
5.2.4 Baum-Welch algorithm . 59

5.3 Using HMMs to Predict Economics Regimes . 61
5.4 Using HMMs to Predict Stock Prices . 62

6 Conclusion 68

Bibliography . 69

Biographical Sketch . 74

vi

LIST OF TABLES

1.1 First ten elements of the three dimensional Faure sequence. 7

2.1 Comparison of acceptance-rejection algorithm AR with its smoothed versions SAR1
and SAR2, in terms of sample standard deviation and efficiency (in parenthesis). . . . 26

3.1 N = 1, 000, 000 random numbers from standard normal distribution 30

3.2 Comparison of inverse and acceptance-rejection algorithms, Algorithm AW (for MC)
and Algorithm 9 (QMC-AW), in terms of the computing time and the Anderson-
Darling statistic of the sample for the Beta distribution when N = 105 numbers are
generated. The percentage points for the A2 statistic at 5% and 10% levels are 2.49
and 1.93, respectively. 32

3.3 Comparison of inverse and acceptance-rejection algorithms, Algorithm BB* (formin(a, b) >
1 and Algorithm 10 (QMC-AW), in terms of accuracy and efficiency for the Beta dis-
tribution when N = 105 numbers are generated. 36

3.4 Comparison of inverse and acceptance-rejection algorithms, Algorithm CH (for MC)
and Algorithm 11 (QMC-CH), in terms of the computing time and the Anderson-
Darling statistic of the sample for the Gamma distribution when N = 106 numbers
are generated. The percentage points for the A2 statistic at 5% and 10% levels are
2.49 and 1.93, respectively. 38

3.5 Comparison of inverse and acceptance-rejection algorithms, Algorithm GS* (for MC)
and Algorithm 12 (QMC-GS*), in terms of the computing time and the Anderson-
Darling statistic of the sample for the Gamma distribution when N = 106 numbers
are generated. The percentage points for the A2 statistic at 5% and 10% levels are
2.49 and 1.93, respectively. 39

4.1 Comparison of inverse and acceptance-rejection methods in pricing European call
options in the variance gamma model using one time step. The option parameters
are: θ = −0.1436, σ = 0.12136, ν = 0.3, initial stock price S0 = 100, strike price
K = 101, and risk free interest rate r = 0.1. 53

4.2 Comparison of inverse and acceptance-rejection methods in pricing European call
options in the variance gamma model using four time steps. The option parameters
are: θ = −0.1436, σ = 0.12136, ν = 0.3, initial stock price S0 = 100, strike price
K = 101, and risk free interest rate r = 0.1. 54

5.1 One year daily stock trading portfolio from December 2012 to December 2013 63

vii

LIST OF FIGURES

2.1 (a) E = {(x, y) ∈ I2|y > 1/2} (b) E = {(x, y) ∈ I2|x+ y > 1/2} 20

5.1 Forecast probabilities of being in the Bear market using DJIA indicator 63

5.2 Forecast probabilities of being in the Bear market using CPI indicator 64

5.3 Forecast probabilities of being in the Bear market using multiple observations 65

5.4 Forecast S&P500 using “close” prices . 66

5.5 Forecast S&P500 using “open”, “close”, “high”, and “low” prices 67

viii

ABSTRACT

Many computational finance problems can be classified into two categories: estimation and predic-

tion. In estimation, one starts with a probability model and expresses the quantity of interest as

an expected value or a probability of an event. These quantities are then computed either exactly,

or numerically using methods such as numerical PDEs or Monte Carlo simulation. Many problems

in derivative pricing and risk management are in this category. In prediction, the main objective

is to use methods such as machine learning, neural networks, or Markov chain models, to build a

model, train it using historical data, and predict future behavior of some financial indicators.

In this dissertation, we consider an estimation method known as the (randomized) quasi-Monte

Carlo method. We introduce an acceptance-rejection algorithm for the quasi-Monte Carlo method,

which substantially increases the scope of applications where the method can be used efficiently.

We prove a convergence result, and discuss examples from applied statistics and derivative pricing.

In the second part of the dissertation, we present prediction algorithms based on hidden Markov

models. We use the algorithms to predict and evaluate economic regimes, and stock prices, based

on historical data.

ix

CHAPTER 1

INTRODUCTION

1.1 Monte Carlo methods

The Monte Carlo simulation is a popular numerical method across sciences, engineering, statis-

tics, and computational mathematics. In simple terms, the method involves solving a problem by

simulating the underlying model using pseudorandom numbers, and then estimates the quantity of

interest as a result of the simulation. In recent years, a deterministic version of the MC method, the

so-called quasi-Monte Carlo (QMC) method, has been widely used by researchers. Different from

the MC method which relies upon pseudorandom numbers, QMC method uses low-discrepancy

sequences for the sampling procedure. The QMC method converges generally faster than the cor-

responding MC method. In this section, we review some basic definitions and theorems related to

these methods which are necessary for our work presented in the subsequent chapters.

It is convenient to describe the MC and QMC method in the context of evaluating a multi-

dimensional integral

Q =

∫
Is
f(x)dx. (1.1)

Here I = [0, 1] and s a positive integer. In the MC method, we generate N pseudorandom vectors

x1,x2, ...,xN in Is, and estimate the integral (1.1) by

QN =
1

N

N∑
i=1

f(xi). (1.2)

The strong law of large numbers states that

lim
N→∞

QN = Q. (1.3)

The performance of the estimator QN is examined in terms of the error, defined as

EMC ≡ Q−QN . (1.4)

Now suppose that f has finite variance

σ2(f) =

∫
Is

[f(x)−Q]2dx <∞. (1.5)

1

By the central limit theorem, we have

EMC ≈ N
(

0,
σ2(f)

N

)
, (1.6)

where N (0, σ2(f)/N) is the normal distribution with mean zero and variance σ2(f)/N . Therefore

the error bound of the MC method is O(N−1/2). The MC method has many advantages:

• It is simple and easy to implement on a computer. It does not require specific knowledge of

the form of the solution or its analytic properties.

• The error bound is independent of the dimension thus the MC method offers a way of over-

coming the curse of dimensionality.

• In general, it is easy to parallelize a MC algorithm. Multiple processors can run a Monte

Carlo simulation simultaneously since each simulation is independent of another.

However, the MC method for numerical integration has the primary drawback:

• The convergence of MC method is slow. Since the probabilistic error bound of MC method

is EMC ≈ O(N−1/2) many samples may be required to obtain acceptable precision in the

answer. In particular, to achieve one more decimal digit of precision in the answer requires

increasing the sample size by a factor of 100.

To improve the efficiency of the MC method for numerical integration, a number of techniques

have been developed. One of the techniques is using low-discrepancy sequences instead of the

pseudorandom sequences used by the MC method. We will discuss these sequences in the next

section.

1.2 Quasi-Monte Carlo methods

The QMC method is based on the theory of uniform distribution and discrepancy. In this

section we will give a brief review of some of the definitions and theorems. The proofs of the

theorems can be found in Niederreiter [46].

1.2.1 Uniform distribution modulo 1

We begin this section with the definition of a counting function. Let ω = {x1,x2,} an infinite

sequence of real numbers in Is, and ωN = {x1,x2, ...,xN}. For an arbitrary subset E of Is, we

define

A(E;ωN) =

N∑
n=1

cE(xn), (1.7)

2

where cE is the characteristic function of E.

Definition 1 A sequence ω is said to be uniformly distributed modulo 1 (u.d mod 1) if for an

arbitrary subset E of Is, we have

lim
N→∞

A(E;ωN)

N
= λs(E), (1.8)

where λs is the Lebesgue-measure on Is.

Note that equation (1.8) is equivalent to

lim
N→∞

N∑
n=1

1

N
cE(xn) =

∫
Is
cE(x)dx. (1.9)

Theorem 1 A sequence ω is u.d. mod 1 if and only if for every real-valued continuous function f

defined on Is we have

lim
N→∞

1

N

N∑
n=1

f(xn) =

∫
Is
f(x)dx. (1.10)

Corollary 1 A sequence ω is u.d. mod 1 if and only if for every Riemann-integrable function f

on Is the equation (1.10) holds.

The convergence of the function A(E,ωN)/N depends not only on the characteristics of the sequence

ω, but also on properties of the set E. We will define a class of sets E on which Equation (1.8)

holds for any u.d. mod 1 sequence.

Definition 2 A Borel set E ⊆ Is is called a λs − continuity set if λs(∂E) = 0,

where ∂E is the boundary of the set E.

Theorem 2 If ω is u.d. mod 1 then

lim
N→∞

A(E;ωN)

N
= λs(E) (1.11)

for all λs-continuity sets E in Is.

3

1.2.2 Discrepancy

The uniformity of the sequence ω can be quantified by its discrepancy, which is defined next.

Definition 3 Let ωN = {x1,x2,,xN} be a finite sequence of real numbers in Is, and J be a

nonempty family of Lebesgue-measurable subsets of Is. The number

DN (ωN) = DN (J , ωN) = sup
J∈J

∣∣∣∣A(J ;ωN)

N
− λs(J)

∣∣∣∣ (1.12)

is called the discrepancy of ωN .

For any vector x = (x1, x2, ..., xN) in Is, let J ∗ be a family of subintervals [0,x) =
∏s
i=1[0, xi) of

Is. The discrepancy D∗N (ωN) = DN (J ∗, ωN) is called the star-discrepancy of ωN . The relationship

between a u.d. mod 1 sequence with its discrepancy is expressed by the following theorem.

Theorem 3 The sequence ω is u.d. mod 1 if and only if

lim
N→∞

DN (ωN) = 0.

Theorem 4 For any sequence ωN in I, we have

1

N
≤ DN (ωN) ≤ 1. (1.13)

From Theorem 4, we see that the discrepancy of a sequence has a fixed upper bound of one and

a lower bound that approaches zero as N goes to infinity. The discrepancy is also bounded by its

star-discrepancy.

Theorem 5 For any point set ωN ∈ Is, we have

D∗N (ωN) ≤ DN (ωN) ≤ 2sD∗N (ωN). (1.14)

From Theorems (3) and (5) we have the following corollary.

Corollary 2 The sequence ω is u.d. mod 1 if and only if

lim
N→∞

D∗N (ωN) = 0.

4

1.2.3 Error bounds for QMC

The classical QMC error bound is the celebrated Koksma-Hlawka inequality [46] given in the

following theorem.

Theorem 6 (Koksma-Hlawka inequality) If f is a function of bounded variation, with the variation

V (f), on I
s
, then for any low-discrepancy point set ω = {x1,x2, ...,xN} in Is, we have

EQMC =

∣∣∣∣∣ 1

N

N∑
i=1

f(xi)−
∫
Is
f(x)dx

∣∣∣∣∣ ≤ V (f)D∗N (ω). (1.15)

The inequality is based on the assumption that the integrand is a bounded variation function

in the sense of Hardy and Krause (BVHK). The accuracy of the estimation is based on the star-

discrepancy of the point set ω, and the variation V (f). The star-discrepancy of the low-discrepancy

sequences is of O(lns(N)/N). Therefore, the QMC method has the error bound O(lns(N)/N) for

an integral of a BVHK function. This rate is asymptotically faster than the MC rate O(N−1/2).

1.2.4 Examples of low-discrepancy sequences

Van der Corput and Halton sequences. Let b ≥ 2 be an integer. The van der Corput

sequence {φb(n)}∞n=0 in base b is defined as follows:

For any positive integer n, suppose that the expression of n in base b is

n = (am...a1a0)b =

m∑
j=0

ajb
j ,

then

φb(n) =
m∑
j=0

aj
bj+1

.

The function φb(n) is called the radical-inverse function. Normally, we choose b as a prime number.

The following upper bound for the discrepancy of the van der Corput sequence in base b = 2 is

from Niederreiter and Kuipers [31].

Theorem 7 The discrepancy DN (φ2(n)) of the van der Corput sequence φ2(n) satisfies

DN (φ2(n)) ≤ ln(N + 1)

N ln 2
. (1.16)

5

Introduced in 1960 by Halton [28], the Halton sequence is a generalization of the van der Corput

sequence to higher dimensions. The s-dimensional Halton sequence in the bases b1, ..., bs is defined

as ω = {(φb1(n), ..., φbs(n)), n = 1, 2, ...}. The Halton sequence is u.d. mod 1 if its bases b1, ..., bs are

relatively prime. In practice, we choose bk as the kth prime number. Meijer [45] gave the following

upper bound for the star-discrepancy of the s-dimensional Halton sequence:

D∗N (ωN) ≤
s∏
j=1

bj − 1

ln bj
(logN)s +O((logN)s−1). (1.17)

This bound has been improved significantly since then in [1] and [21].

Faure sequences. The Faure sequence was introduced by Faure in 1982 [20]. Like the Halton

sequence, the Faure sequence is an extension of the van der Corput sequence, however it uses only

one base for all dimensions and uses a permutation of the vector elements for each dimension. The

base for all dimensions is the smallest prime b which is bigger than or equal to the dimension s.

Joy, Boyle and Tan [30] described how to generate the nth element of the s dimensional Faure

sequence, φn = (φ1n, φ
2
n, ..., φ

s
n), as follows:

Let b be the smallest prime number that is bigger than or equal to s. We start as before by

rewriting n in base b as

n = (a1m...a
1
1a

1
0)b =

m∑
j=0

a1jb
j . (1.18)

The first component of vector φn is defined as:

φ1n =

m∑
j=0

a1j
bj+1

.

Then, the coefficients akj of bj in (1.18) are updated as follows

akj =

m∑
i≥j

Cija
k−1
i (mod b), s ≥ k ≥ 2, m ≥ j ≥ 0,

where Cij =
i!

j!(i− j)!
.

The remaining components of vector φn are obtained recursively by:

φkn =

m∑
j=0

akj
bj+1

, s ≥ k ≥ 2.

Table 1.1 displays the first ten elements of the three dimensional Faure sequence.

6

Table 1.1: First ten elements of the three dimensional Faure sequence.

n a0 a1 a2 φ1n φ2n φ3n

1 1 0 0 1/3 1/3 1/3

2 2 0 0 2/3 2/3 2/3

3 0 1 0 1/9 4/9 7/9

4 1 1 0 4/9 7/9 1/9

5 2 1 0 7/9 1/9 4/9

6 0 2 0 2/9 8/9 5/9

7 1 2 0 5/9 2/9 8/9

8 2 2 0 8/9 5/9 2/9

9 0 0 1 1/27 16/27 13/27

10 1 0 1 10/27 25/27 22/27

By convention, the word “low-discrepancy” sequence is used for a sequence with D∗N given

by O(logsN/N). From the Koksma-Hlawka inequality, this implies the QMC error bound for

numerical integration is O(logsN/N) when low-discrepancy sequences are used.

1.3 Randomized quasi-Monte Carlo

A drawback of the QMC method is that it is not practical to assess the accuracy of its esti-

mates. To overcome this drawback, researchers introduced randomized quasi-Monte Carlo methods

(RQMC) where a statistical error analysis is available. These methods allow independent simula-

tions via QMC, and the resulting estimates can be analyzed statistically. Suppose u is a random

vector with the uniform distribution on Is. Let βu = {x1,x2, ...}, xi ∈ Is for i = 1, 2, ..., be low

discrepancy sequence indexed by u. For each sequence, we have the estimate

Q(βu) =
1

N

N∑
i=1

f(xi). (1.19)

Then, Q =
∫
Is f(x)dx is estimated by taking the average of M samples

Q ' 1

M

M∑
m=1

Q(βum). (1.20)

RQMC has three general properties:

1. E[Q(βu)] = Q

2. V ar(Q(βu) = O(N−2 log2s(N))

7

3. |Q(βu)−Q| ≤ V (f)D∗(βu)

A detailed survey of RQMC methods is given by Ökten and Eastman [16]. We next discuss

some examples of RQMC sequences.

1.3.1 Random-start Halton sequences

We first present an alternative description of the Halton sequence based on the von Neuman-

Kakutani transformation [32],[60], [64]. We next define the rightward carry addition ⊕. Let b > 2

be an integer. For x ∈ [0, 1], the representation of x in base b is

x =

∞∑
k=0

uk
bk+1

.

If x = 1, set x = .(b− 1)(b− 1).... (in base b). The rightward carry sum in base b of x and 1/b is

Tb(x) = x⊕ 1

b
=

1 + um
bm+1

+
∑
k≥m

uk
bk+1

,

where m = min{k|uk 6= b− 1}.

The operator Tb(x) is called the b-adic von Neumann-Kakutani transformation. The sequence

{Tnb (x)}∞n=0 is defined recursively by

T 0
b (x) = x

Tn+1
b = Tnb (Tn−1b (x)), n ≥ 1.

Note that if x = 0, {Tnb (0)}∞n=0 is the van der Corput sequence in base b. If x = .d0...dj (in

base b), denote the corresponding integer m = dj ...d0 (in base b), then we have x = φb(m) and

Tnb (x) = φb(m+ n), where φb(m) is the radical-inverse function defined in Section 1.2.4

The von Neumann-Kakutani transformation can be generalized to higher dimensions. For x =

(x1, ..., xs) ∈ Is, let b = (b1, ..., bs) be a vector in Ns, where b1, ..., bs are pairwise prime, and define

the s-dimensional sequence Tnb (x) = {(Tnb1(x1), ..., T
n
bs(xs))}

∞
n=0. Using the von Neumann-Kakutani

transformation on Is, we have the following definition of random-start Halton sequence. Let x

be a random vector with uniform distribution on Is, then the sequence {Tnb (x)}∞n=0 is called a

random-start Halton sequence. The following theorem (see [33]) shows that the discrepancy of the

random-start Halton sequence is O((logsN)/N).

8

Theorem 8 For any start point x ∈ Is, the sequence ω = {Tnb (x)}∞n=0 is a low-discrepancy sequence

with the star-discrepancy

D∗N (ωN) ≤ 1

N

[
1 +

s∏
i=1

(bi − 1)
log(biN)

log bi

]
. (1.21)

Note that the upper bound of the star discrepancy does not depend on the start point x.

1.3.2 Scrambled (t,m, s)-nets and (t, s)-sequences

The (t,m, s)-nets and (t, s)-sequences are special constructions of QMC point sets and se-

quences. A detailed survey of nets and sequences is given by Niederreiter [46]. Here we review

some basic definitions. Let b ≥ 2 be an integer. A subinterval E of Is of the form

E =
s∏
i=1

[aib
−di , (ai + 1)b−di),

with ai, di ∈ Z, di ≥ 0, 0 ≤ ai < bdi for 1 ≤ i ≤ s is called an elementary interval in base b.

Definition 4 Let 0 ≤ t ≤ m be integers. A (t,m, s)-net in base b is a point set P of bm points in

Is such that A(E;P) = bt for every elementary interval E in base b with λs(E) = bt−m.

Definition 5 Let t ≥ 0 be an integer. A sequence x0,x1, ... of points in Is is a (t, s)-sequence in base

b if , for all integers k ≥ 0 and m > t, the point set consisting of the xn with kbm ≤ n < (k + 1)bm

is a (t,m, s)-net in base b.

Owen [53] introduced a way of randomizing (t,m, s) nets and (t, s) sequences. The scrambled

nets provide improvements for V ar(Q(βu)) if the integrand is smooth enough. For example, for

a smooth function f , Owen [54] shows that V ar(Q(βu)) = O(N−3 lns−1(N)). However, Owen’s

scrambling requires a great many permutations.

1.3.3 Random shifting

Random shifting is a simple method and can be applied to any QMC sequence. Suppose we have

a QMC sequence ω = {x1,x2,},xi ∈ Is. In the random shifting method, we generate a random

vector u ∈ Is, then we construct a RQMC sequence ω(u) = {x(u)
1 ,x

(u)
2 , ...}, where x

(u)
i = (xi + u)

mod 1, i = 1, 2, ...

9

Theorem 9 The discrepancy of a shifted low-discrepancy sequence satisfies

DN (ω
(u)
N) ≤ 2sDN (ωN).

More properties and applications of random shifting are considered in [16].

1.4 Monte Carlo methods in computational finance

The Monte Carlo method is used widely in pricing of derivative securities and risk management.

The fundamental implication of asset pricing theory states that the price of a derivative security can

be represented as an expectation under certain circumstances (see Glasserman [26]). Evaluating a

derivative security by the MC method involves simulating paths of stochastic processes. These paths

are generated by sampling random points from a space of paths. The dimension and distribution

of the space depend on the model used for pricing the derivative. For a high dimensional problem,

the MC method in general is more appropriate than a finite difference method.

Using the MC method, one should consider two important factors: the variance, or the risk,

of the estimation (equation (1.5)) and the computing time. The efficiency of the MC method

can be improved by using better random number generators to reduce the computing time and

the variance. Quasi Monte Carlo method is also used to reduce the MC simulation error. We

will discuss more details about these techniques in Chapter 2. Modifying model’s assumptions is

another way to improve the efficiency of a financial model. In this section, we introduce the variance

gamma model, a modification of the famous Black-Scholes model, for option pricing.

Black and Scholes [11] developed an important mathematical model for option pricing in 1973.

The model, called the Black-Scholes model, was the first quantitative tool to price options, and has

been used in financial industry since. Option traders derive option prices from the Black-Scholes

model and then compare it with the prevailing option price in the exchange in order to determine

if a particular option contract is over or under valued, hence assisting them in their options trading

decision. However, some unrealistic assumptions of the model lead to some disagreements of the

theoretical values with those from the reality, e.g., the volatility smile. One of the specific assump-

tions that are known to relate to this problem is that the sample paths of the diffusion process

are continuous functions of time. In fact, as noted by [5], a jump component in modeling option

price dynamics is important to overcome the difficulties in explaining the volatility smile effects,

for example, in short-dated option prices.

10

In 1990, Madan and Seneta [39] introduced the variance gamma (VG) process as a model

for option pricing. The improvement in the VG model is that there is no continuous martingale

component, allowing it to overcome some shortcomings of the Black-Scholes model. In particular,

the VG process is a pure jump process that has infinite number of jumps in each interval of time.

The VG model is a promising method to price options because it allows for a wider modeling of

skewness and kurtosis than the Brownian motion does. In its original version, the VG model is

introduced as a time-changed Brownian motion without drift by a gamma process [39]. In 1998,

Madan, Carr, and Chang [38] extended this model for a Brownian motion with constant drift

and volatility at a random time change given by a gamma process. In these works, the authors

developed a closed-form solution for the European option price, which gives better approximations

to the market option prices when compared to the original Black-Scholes model.

The VG process can also be defined as the difference of two increasing gamma processes. The

gamma process with the positive sign describes the increase of the price, while the gamma process

with the negative sign expresses the decrease of the price. In the VG model, each unit of time is

viewed as an economically relevant time length given by an independent random variable which

follows the gamma distribution of unit mean and positive variance. The VG model has two new pa-

rameters compared with the Black-Scholes model; one controls the kurtosis, and the other controls

the skewness of the distribution.

Several modified versions of the VG model have been developed. Since the VG process has a

closed-form expression for its characteristic function, Carr and Madan [12] were able to use the

fast Fourier transform to calculate European option prices based on the VG model. This approach,

however, does not fit well with the path-dependent options. Wang [62] has developed a version

of the VG model that decomposes the marginal VG processes into independent components, and

discussed its applications in pricing multi-asset options, e.g., exchange options, spread options,

basket options and cross-currency options. Sensitivity analysis of options using the VG model is

discussed in [10].

Monte Carlo and quasi-Monte Carlo methods are alternative approaches to compute option

prices under the VG model in both path-independent and path-dependent cases, and improving

the efficiency of these methods is of interest to many researchers. For example, Ribeiro and Webber

[58] developed the QMC method with bridge sampling for path-dependent options under the VG

11

model. Avramidis and L’Ecuyer [2] introduced efficient MC and QMC algorithms for the option

prices under the VG model.

1.5 Markov chains

In this section we introduce a special kind of stochastic process, a Markov chain, where the

outcome of an experiment depends only on the outcome of the previous experiment. We later

discuss hidden Markov models in Chapter 5.

A. A. Markov (1856-1922) introduced Markov chains in 1906 when he gave the first theoretical

results for stochastic processes by using the term “chain” for the first time. In 1913 he used

Markov chains to calculate letter sequences of the Russian language. A Markov chain includes

three components: a sequence of random variables X = (X0, X1, ...) (the chain), a state space

S = (S1, S2, ...) (in which the random variables take values), and a transition matrix.

Definition 6 A discrete-time stochastic process X = (Xt), t = 0, 1, ..., taking values in a finite

state space S = (Si), i = 1, 2, ..., N is said to be a (homogenous) Markov chain if it satisfies the

Markov property and stationary transition probabilities:

1. The conditional distribution of Xt given X0, ..., Xt−1 is the same as the conditional distribution

of Xt given Xt−1 only

2. The conditional distribution of Xt given Xt−1 does not depend on t.

By definition, a Markov chain process starts in one of these states in the state space S and

moves successively from one state to another. Each move is called a step. If the chain is currently

in state Si, then it moves to state Sj at the next step with a probability that does not depend

upon which states the chain was before. More specifically, a Markov chain has a constant matrix

of transition probabilities (or transition matrix), denoted by A = (aij), i, j = 1, 2, ..., N , where

aij = P (Xt = Sj |Xt−1 = Si).

The transition matrix satisfies:

aij ≥ 0 i, j = 1, 2, ..., N

and
N∑
j=1

aij = 1.

12

Given an initial vector of distributions at the initial time p = (pi), i = 1, 2, ..., N , where pi =

P (X0 = Si), the matrix A allows us to compute the distribution at any subsequent time. For

example, P (X1 = j,X0 = Si) = piaij .

Theorem 10 Let A be the transition matrix of a Markov chain, and let p be the probability vector

which represents the initial distribution. Then the probability that the chain is in state Si after n

steps is the ith entry in the vector

pAA...A︸ ︷︷ ︸
t times

= pAt.

Theorem 11 Let A be the transition matrix of a Markov chain. The ijth entry of the matrix

An = AA...A︸ ︷︷ ︸
n times

, denoted by p
(n)
ij , gives the probability that the Markov chain, starting in state Si, will

be in state Sj after n steps.

More properties of Markov chains can be found in [49].

13

CHAPTER 2

THE ACCEPTANCE-REJECTION METHOD FOR

LOW-DISCREPANCY SEQUENCES

2.1 Introduction

Model simulations involve generating pseudorandom numbers from various probability distri-

butions used in the model. How do we generate a QMC sequence from a distribution F (x)? The

process is somewhat similar to MC. One starts with a QMC sequence from the uniform distri-

bution on (0, 1)s and then applies a transformation method to the sequence in order to obtain a

sequence from the target distribution. Currently, the only general transformation method used

for QMC is the inverse transformation method (the Box-Muller method is also applicable in QMC

[27], but its scope is smaller). The acceptance-rejection method is usually avoided in QMC, though

“smoothed” versions of it were introduced by Moskowitz & Caflisch [4] and Wang [63]. The reasons

for this avoidance has to do with some theoretical difficulties that involve the inapplicability of

Koksma-Hlawka type inequalities to indicator functions with infinite variation.

If the inverse transformation method is computationally expensive for a particular distribution,

then its application to a QMC sequence can make the overall QMC simulation too expensive to

provide any advantages over the MC simulation. An example of costly inverse transformation

algorithm appears in the simulation of the variance gamma model by QMC. Avramidis et. al. [3]

comment on the additional cost of computing inverse of beta, gamma, and normal distributions,

which are needed in the generation of the variance gamma model, and suggest that this additional

cost needs to be considered while assessing the efficiency of different estimators.

In this chapter, we present a QMC version of the acceptance-rejection method, prove a conver-

gence result, and develop error bounds. We present QMC algorithms based on acceptance-rejection

for the normal, beta and gamma distributions. We also compare our acceptance-rejection QMC

with the “smoothed” acceptance-rejection algorithms by Moskowitz & Caflisch [4], and Wang [63].

The availability of acceptance-rejection as a transformation method for QMC significantly broadens

its scope.

14

2.2 The acceptance-rejection algorithm

The acceptance-rejection method is one of the standard methods used for generating distri-

butions. Assume we want to generate from the density f(x), and there is another density g(x)

(with CDF G(x)) we know how to sample from, say, by using the inverse transformation method.

Assume the density functions f(x), g(x) have the same domain, (a, b), and there exists a finite

constant C = supx∈(a,b) f(x)/g(x). Let h(x) = f(x)/Cg(x). The Monte Carlo acceptance-rejection

algorithm is:

Algorithm 1 Acceptance-rejection algorithm to generate pseudorandom numbers from the density

f(x).

1. Generate pseudorandom numbers u, v from the uniform distribution on (0, 1)

2. Generate X from g(x) by X = G−1(u)

3. If v ≤ h(X) accept X; Otherwise reject X

4. Repeat Steps 1 to 3, until the necessary number of points have been accepted.

Acceptance-rejection is usually avoided in QMC because it involves integration of a character-

istic function: this is the step that corresponds to accepting a candidate by a certain probability.

Since characteristic functions can have infinite variation in the sense of Hardy and Krause, and

since the celebrated Koksma-Hlawka inequality [46] links the integration error to the variation of

the integrand, researchers for the most part have stayed away from the acceptance-rejection method

with low-discrepancy sequences. Two notable exceptions are Moskowitz and Caflisch [4] and Wang

[63]. In these papers, smoothed versions of acceptance-rejection are introduced. These methods

replace the characteristic functions by continuous ones, thereby removing functions with infinite

variation. However, these smoothing methods can be very time consuming; if one considers effi-

ciency (time multiplied by error), the smoothing method can be worse than crude MC simulation.

We will present such examples in Section 2.4. Perhaps for this reason, the smoothing methods have

not gained much ground in applications.

For MC, acceptance-rejection is a very powerful tool. There are several specialized algorithms

that combine acceptance-rejection with other techniques to obtain fast simulation methods for

15

many distributions used in computing; for a recent reference see Fishman [22]. Currently, the

QMC method cannot be effectively used in these algorithms, since the smoothing techniques are

expensive.

Let {x1, ..., xN} be numbers obtained from a QMC algorithm that generates the distribution

function F (x). How well these numbers approximate F (x) is given by the F -star discrepancy of

{x1, ..., xN}:

D∗F (x1, ..., xN) = sup
α∈[a,b]

∣∣∣∣A([a, α); {x1, ..., xN})
N

− F (α)

∣∣∣∣
where (a, b) is the support of F , and the function A([a, α); {x1, ..., xN}) counts how many numbers

in {x1, ..., xN} belong to the interval [a, α). If F is the uniform distribution, we simply write

D∗(x1, ..., xN) and call it star discrepancy. Note that F -star discrepancy is the Kolmogorov-Smirnov

statistic that measures the distance between the empirical and theoretical distribution functions.

In our numerical results we will use the Anderson-Darling statistic which is a generalization of

the Kolmogorov-Smirnov statistic (see [15]). The Anderson-Darling statistic corresponds to the

“weighted” F -star discrepancy of a point set. More on the weighted discrepancy and corresponding

Koksma-Hlawka type error bounds can be found in Niederreiter & Tichy [48] and Ökten [50].

Next we introduce the acceptance-rejection method for low-discrepancy sequences.

Algorithm 2 QMC Acceptance-rejection algorithm to generate a sequence whose F -star discrep-

ancy converges to zero.

1. Generate a low-discrepancy sequence ω from the uniform distribution on (0, 1)2

ω = {(ui, vi) ∈ (0, 1)2, i = 1, 2, ...}

2. For i = 1, 2, ...

• Generate X from g(x) by X = G−1(ui)

• If vi ≤ h(X) accept X; otherwise reject X

3. Stop when the necessary number of points have been accepted.

The algorithm starts with a point set in (0, 1)2

ωN = {(ui, vi), i = 1, ..., N}

16

and then applies inversion (Step 2) to obtain the new point set

P = {(G−1(ui), vi), i = 1, ..., N}.

Assume κ(N) points are accepted at Step 2 of the algorithm. After a renumbering of the indices,

we obtain the set of “accepted points” in (a, b):

Qκ(N) = {G−1(u1), ..., G−1(uκ(N))}. (2.1)

The next theorem shows that the accepted points have F -star discrepancy that goes to zero

with N . This result generalizes Theorem 2.4 of Wang [63] who proves a similar convergence result

when the density g(x) is the uniform density on (0, 1)s, and f(x) is a density function on (0, 1)s.

Theorem 12 We have

D∗F (Qκ(N))→ 0 as N →∞ (2.2)

where D∗F (Qκ(N)) is the F -star discrepancy of the point set Qκ(N).

Proof

We need to prove that for any α ∈ (a, b)

|Fκ(N)(α)− F (α)| =
∣∣∣∣A([a, α);Qκ(N))

κ(N)
− F (α)

∣∣∣∣→ 0, (2.3)

where Fκ(N)(α) is the empirical CDF. Define the set

E(α) =
{

(x, y) ∈ (0, 1)2 : G−1(x) < α, y ≤ h(G−1(x))
}

=
{

(x, y) ∈ (0, 1)2 : x < G(α), y ≤ h(G−1(x))
} (2.4)

(for simplicity we will assume G(x) is strictly increasing). Consider a point G−1(ui) ∈ (a, b), i ∈

{1, ..., N}. This point belongs to Qκ(N) and falls into [a, α) if and only if

1. G−1(ui) < α,

2. G−1(ui) is accepted in Step 2, i.e., (G−1(ui), vi) ∈ P is such that vi ≤ h(G−1(ui)).

Therefore, G−1(ui) ∈ [a, α), i ∈ {1, ..., N}, if and only if (ui, vi) ∈ E(α), which implies

A([a, α);Qκ(N)) = A(E(α);ωN).

17

Now, we work on the local discrepancy:∣∣∣A([0,α);Qκ(N))

κ(N) − F (α)
∣∣∣

=
∣∣∣ N
κ(N)

A(E(α);ωN)
N − N

κ(N)V ol(E(α)) + N
κ(N)V ol(E(α))− F (α)

∣∣∣
≤ N

κ(N)

∣∣∣A(E(α);ωN)
N − V ol(E(α))

∣∣∣+
∣∣∣ N
κ(N)V ol(E(α))− F (α)

∣∣∣ . (2.5)

Here V ol(E(α)) refers to the Lebesgue measure of the set E(α). Note that ωN is a u.d. mod 1

sequence in (0, 1)2, and the boundary of the set E(α) has Lebesgue measure zero since h(G−1(x))

is a continuous function on (0, 1). Thus, we have:∣∣∣∣A(E(α);ωN)

N
− V ol(E(α))

∣∣∣∣→ 0 (2.6)

as N →∞. Substituting α = b in (2.5), we obtain

A(E(b);ωN)

N
→ V ol(E(b)).

Indeed, note that (ui, vi) from ωN belongs to E(b) if and only if vi ≤ h(G−1(ui)), which gives us

all the accepted points, i.e., A(E(b);ωN) = κ(N). Then, we have

κ(N)

N
→ V ol(E(b)). (2.7)

Equations (2.6) and (2.7) imply the first term of the upper bound of inequality (2.5) converges to

zero. To prove that the second term also goes to zero, it suffices to show that

V ol(E(α))

V ol(E(b))
− F (α) = 0. (2.8)

From (2.4) we have

V ol(E(α)) =

∫ G(α)

0

∫ h(G−1(x)

0
dydx =

∫ G(α)

0
h(G−1(x))dx. (2.9)

Change of variables yields: u = G−1(x), du = dx/G′(G−1(x)), and thus

V ol(E(α)) =

∫ α

a
h(u)G′(u)du =

∫ α

a
h(u)g(u)du =

1

C

∫ α

a
f(u)du =

F (α)

C
. (2.10)

Similarly, we have

V ol(E(b)) =
1

C

∫ b

a
f(u)du =

1

C
, (2.11)

since f is the density function on (a, b). This completes the proof.

18

Note that Theorem 12 generalizes to the case when X is an s-dimensional random vector in

a straightforward way. In Algorithm 2, the low-discrepancy sequence ω would be replaced by an

(s+ 1)-dimensional sequence

ω = {(ui, vi) ∈ (0, 1)s+1, i = 1, 2, ...}

where ui ∈ (0, 1)s.

2.3 Error bounds

The Koksma-Hlawka inequality does not provide a practical method to estimate error because

both V (f) and D∗N (ω) are difficult to compute accurately. Several researchers introduced QMC

error bounds for integrals without using the variation of the integrand. Niederreiter [47] established

a QMC error bound for (M, µ)-uniform point sets. Hickernell and Wang [64] introduced the average

integration error using random start Halton sequences. In this section, we discuss the error bounds

of Niederreiter [47] and Hickernell & Wang [64].

2.3.1 MC-QMC integration of BVHK and UBVHK functions

Although the Koksma-Hlawka inequality (1.15) is not valid for functions of infinite variation,

in practice, QMC estimation can be successfully used for such functions.

We consider Owen’s classification of BVHK and UBVHK functions [55]. For integers s ≥ 1 and

r ≥ 0, let fs,r be a function on Is defined by

fs,r(x) =

{
max(x1 + ...+ xs − 1/2, 0)s, r > 0
cx1+...+xs>1/2, r = 0.

(2.12)

The following result is from Owen [55].

Theorem 13 V (fs,r) is finite for s ≤ r and infinite for s ≥ r + 2.

Therefore, with s = 2 and r = 0, the indicator function, cE , is UBVHK, where E = {(x, y) ∈

I2|x+ y > 1/2}. In contrast, the function cE is BVHK for E = {(x, y) ∈ I2|y > 1/2}.

We will use MC and QMC methods to estimate the integral of two indicator functions. For

each case, we compare the convergence of the simulations by plotting the actual error against the

number of simulations. In Figure 2.1, the errors seem to converge to zero in both methods. In

Figure 2.1(a), the integrand is a BVHK function, and in Figure 2.1(b), it is a UBVHK function. In

19

each case the QMC error is smaller than the MC error, and the variation of the function does not

seem to have any effect on the convergence. In fact, to the best of our knowledge, in the literature

there is no example of an integrand that exhibits a divergent error behavior due to its infinite

variation.

4 5 6 7 8 9 10 11 12
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

log(N)

E
rr

or

Integral of function of bounded variation

QMC
MC

4 5 6 7 8 9 10 11 12
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

log(N)

E
rr

or

Integral of function of unbounded variation

QMC
MC

Figure 2.1: (a) E = {(x, y) ∈ I2|y > 1/2} (b) E = {(x, y) ∈ I2|x+ y > 1/2}

2.3.2 Error bounds for QMC with uniform point sets

Indicator functions, unless some conditions are satisfied ([55]), have infinite variation and thus

Koksma-Hlawka inequality cannot be used to bound their error. This has been the main theoretical

obstacle for the use of low-discrepancy sequences in acceptance-rejection algorithms. As a remedy,

smoothing methods ([4], [63]) were introduced to replace the indicator functions by smooth functions

so that Koksma-Hlawka is applicable. In this section we present error bounds that do not require the

bounded variation assumption, and allow the analysis of our QMC Acceptance-Rejection algorithm.

In the following section, we will compare our algorithm with the smoothing approach numerically.

Consider a general probability space (X ,B, µ), where X is an arbitrary nonempty set, B is a

σ-algebra of subsets of X , and µ is a probability measure defined on B. Let M be a nonempty

subset of B. For a point set P = {x1, . . . , xN} and M ⊆ X , define A(M ;P) as the number of

elements in P that belong to M. A point set P of N elements of X is called (M, µ)-uniform if

A(M ;P)/N = µ(M) (2.13)

for all MεM. The definition of (M, µ)-uniform point sets is due to Niederreiter [47] who developed

error bounds when uniform point sets are used in QMC integration. A useful feature of these

20

bounds is that they do not require the integrand to have finite variation. The following result is

from Göncü and Ökten [52]:

Theorem 14 Let M ={M1, ...,MK} be a partition of X and f be a bounded µ-integrable function

on a probability space (X ,B, µ), then for a point set P = {x1, ..., xN} we have∣∣∣∣∣ 1

N

N∑
n=1

f(xn)−
∫
X
fdµ

∣∣∣∣∣ ≤
K∑
j=1

µ(Mj)(Gj(f)− gj(f)) +
K∑
j=1

εj,N max(|gj(f)|, |Gj(f)|) (2.14)

where εj,N = |A(Mj ;P)/N − µ(Mj)|, Gj(f) = supt∈Mj
f(t) and gj(f) = inft∈Mj f(t), 1 ≤ j ≤ K.

Theorem 14 provides a general error bound for any point set P. If the point set is an (M, µ)-

uniform point set then the second summation on the right hand side becomes zero and the result

simplifies to Theorem 2 of Niederreiter [47]. Setting f = 1S , the indicator function of the set S, in

Theorem 14, we obtain a simple error bound for indicator functions:

Corollary 3 Under the assumptions of Theorem 14, we have∣∣∣∣A(S;P)

N
− µ(S)

∣∣∣∣ ≤ K∑
j=1

µ(Mj)(Gj(1S)− gj(1S)) + εj,N .

Now consider Algorithm 2 (QMC Acceptance-Rejection algorithm) where a low-discrepancy se-

quence is used to generate the point set Qa(N) (see (2.1)). We proved that |A([a, α);Qa(N))/a(N)−

F (α)| → 0 as N → ∞ in Theorem 12. Corollary 3 yields an upper bound for the error of con-

vergence. Indeed, let S = [a, α) for an arbitrary α ∈ (a, b), X be the domain for the distribution

function F , and µ the corresponding measure. We obtain the following bound:

∣∣∣∣A([a, α); Qa(N))

a(N)
− F (α)

∣∣∣∣ ≤ K∑
j=1

µ(Mj)(Gj(1[a,α))− gj(1[a,α))) + εj,a(N). (2.15)

If the point set Qa(N) happens to be an (M, µ)-uniform point set with respect to the partition,

then the term εj,a(N) vanishes.

2.3.3 Error bounds for RQMC methods

Next, we discuss randomized quasi-Monte Carlo (RQMC) methods and another error bound

that addresses the bounded variation hypothesis.

21

Let F be the class of real continuous functions defined on [0, 1)s and equipped with Wiener

sheet measure µ. Theorem 15 shows that the mean variance of Q(βu) under this measure is

O(N−2(logN)2s). Since a function f(x) chosen from the Brownian sheet measure has unbounded

variation with probability one, this result provides an alternative error analysis approach to classical

Koksma-Hlawka inequality which requires the integrand to be of finite variation. This result was

obtained by Wang and Hickernell [64] (Theorem 5, page 894) for random-start Halton sequences.

However, their proof is valid for any RQMC method, as we show next.

Theorem 15 The average variance of the estimator, Q(βu), taken over function set F , equipped

with the Brownian sheet measure dµ, is:∫
F
E[Q(βu)−Q]2dµ(f) = O(N−2(logN)2s).

Proof ∫
F
E[Q(βu)−Q]2dµ(f) =

∫
F

∫
Is

(Q(βu)−Q)2dudµ(f)

=

∫
Is

∫
F

(Q(βu)−Q)2dµ(f)fdu

=

∫
Is

(T ∗N (1− βu))2du.

≤
∫
Is

(D∗N (1− βu))2du,

(2.16)

where 1 − βu = {1 − x1,1 − x2, ...,1 − xN} and (T ∗N (f))2 =
∫
F EQMC(f)2df , (a result in Wozni-

akowski [65]). The last inequality is obtained by applying the inequality T ∗N (ωn) ≤ D∗N (ωn), where

T ∗N (ωn) is defined by Definition 2 in [16]. We also have:∣∣∣∣∣A(ωu, [0,y])

N
−

s∏
i=1

yi

∣∣∣∣∣ =

∣∣∣∣∣A(βu, [1− y,1])

N
−

s∏
i=1

yi

∣∣∣∣∣
≤ DN (βu)

≤ 2sD∗N (βu).

(2.17)

The last inequality is obtained by applying Theorem 5 in Chapter 1. By taking the supremum of

the left hand side of the above inequality over all closed interval of the form [0,y], we obtain

D∗N (ωu) ≤ 2sD∗N (βu) = O(N−1(logN)s).

22

Therefore, ∫
F
E[Q(βu)−Q]2dµ(f) = O(N−2(logN)2s). (2.18)

This completes the proof.

In our numerical results that follow, we use random-start Halton sequences. Theorem 14 can

be used to analyze error for both inverse transformation and acceptance-rejection implementations

that we will discuss. Theorem 15 applies only for the inverse transformation implementations, since

it is not known whether the accepted points given by the acceptance-rejection algorithm satisfy the

discrepancy bound O(N−1(logN)s).

2.4 Smoothing

In this section we will compare the QMC Acceptance-Rejection Algorithm 2 with the smoothed

acceptance-rejection algorithms by Moskowitz & Caflisch [4], and Wang [63]. The algorithms will be

compared numerically in terms of efficiency, which is defined as sample variance times computation

time. We will use the same numerical examples that were considered in [4] and [63].

Consider the problem of estimating the integral Q =
∫
Is f(x)dx using the importance function

p(x)

Q =

∫
(0,1)s

f(x)

p(x)
p(x)dx.

The MC estimator for Q is

Q̃ =
1

N

N∑
i=1

f(xi)

p(xi)
, xi ∼ p(x).

The standard acceptance-rejection algorithm, Algorithm 1, takes the following form for this prob-

lem:

Algorithm 3 (AR)Acceptance-Rejection

1. Select γ ≥ supx∈(0,1)s p(x)

2. Repeat until N points have been accepted:

• Sample xi ∈ (0, 1)s, yi ∈ (0, 1)

• If yi <
p(xi)
γ , accept xi

Otherwise, reject xi

23

The smoothed acceptance-rejection method of Moskowitz and Caflisch [4] introduces a weight

function w(x, y) such that ∫ 1

0
w(x, y)dy =

p(x)

γ
, x ∈ (0, 1)s, y ∈ (0, 1).

The weight function w(x, y) is generated by the following algorithm we call SAR1.

Algorithm 4 (SAR1) Smoothed acceptance-rejection by Moskowitz and Caflisch [4]

1. Select γ ≥ supx∈(0,1)s p(x), and 0 < σ << 1

2. Repeat until weight of accepted points is within one unit of N :

• Sample xi ∈ (0, 1)s, yi ∈ (0, 1)

• If yi <
p(xi)
γ − 1

2σ set w = 1

Else if yi >
p(xi)
γ + 1

2σ set w = 0

Else set w = 1
σ (p(xi)γ + 1

2σ − yi)

Wang [63] extended the SAR1 algorithm by choosing functions A(x), B(x) such that

0 ≤ A(x) < p(x) < B(x) ≤ γ, x ∈ (0, 1)s, γ ≥ sup
x∈(0,1)s

p(x),

and setting the weight function using the following algorithm (which we call SAR2).

Algorithm 5 (SAR2) Smoothed acceptance-rejection by Wang [63]

1. Select γ ≥ supx∈(0,1)s p(x), and functions A(x), B(x) such that

0 ≤ A(x) < p(x) < B(x) ≤ γ, x ∈ (0, 1)s

2. Repeat until weight of accepted points is within one unit of N :

• Sample xi ∈ (0, 1)s, yi ∈ (0, 1)

• If yi <
A(xi)
γ set w = 1

Else if yi ≥ B(x)
γ set w = 0

Else if p(xi)
γ ≥ yi > A(xi)

γ set w = 1 + (p(xi)−B(xi))(γyi−A(xi))
(B(xi)−A(xi))(p(xi)−A(xi))

Else set w = (p(xi)−A(xi))(γyi−B(xi))
(B(xi)−A(xi))(p(xi)−B(xi))

24

Now we consider the example used in [4] (Example 3, page 43) and [63]. The problem is to

estimate the integral Q =
∫
Is f(x)dx, where s = 7 and

f(x) = exp(1− (sin2(
π

2
x1) + sin2(

π

2
x2) + sin2(

π

2
x3))) arcsin(sin(1) +

x1 + ...+ x7
200

).

The importance function is

p(x) =
1

C
exp(1− (sin2(

π

2
x1) + sin2(

π

2
x2) + sin2(

π

2
x3))),

where

C =

∫
(0,1)7

exp(1− (sin2(
π

2
x1) + sin2(

π

2
x2) + sin2(

π

2
x3)))dx = (

∫ 1

0
exp(− sin2(

π

2
x))dx)3.

Three estimators are used:

• Crude Monte Carlo (CR):

1

N

N∑
i=1

f(xi), xi ∼ U((0, 1)s)

• Acceptance-Rejection (AR):

1

N

N∑
i=1

f(xi)/p(xi), xi ∼ p(x), xi are accepted points

• Smoothed Acceptance-Rejection (SAR1 and SAR2):

1

N

N∗∑
i=1

w(xi, yi)f(xi)/p(xi),

where N∗ is a positive integer such that
∑N∗

i=1w(xi, yi) is approximately N .

Table 2.1 displays the efficiency of the algorithms. We normalize the efficiency of the algorithms by

the efficiency of the crude Monte Carlo algorithm. For example, the efficiency of the Acceptance-

Rejection (AR) algorithm, EffAR is computed by

EffAR =
σ2CR × tCR
σ2AR × tAR

, (2.19)

where σCR is the sample standard deviation of M estimates obtained using the crude Monte Carlo

algorithm, and tCR is the corresponding computing time. Similarly, the parameters σAR and tAR

25

refer to the sample standard deviation and computing time for the Acceptance-Rejection (AR)

algorithm.

Although we are primarily interested in how these algorithms compare when they are used with

low-discrepancy sequences, for reference, we also report efficiencies when the algorithms are used

with pseudorandom numbers. The first part of the table reports the Monte Carlo values (MC)

where the pseudorandom sequence Mersenne twister [43] is used, and the second part reports the

(randomized) quasi-Monte Carlo (RQMC) values where random-start Halton sequences ([51], [64])

are used.

In the numerical results, M = 64, σ = 0.2 in the algorithm SAR1, and A(x) = 1/Ce2, B(x) =

e/C in the algorithm SAR2. We consider the same sample sizes N as in [4] so that our results

can be compared with theirs. Table 2.1 reports the sample standard deviation and efficiency (in

parenthesis) for each algorithm. Note that in our notation, larger efficiency values suggest the

method is better.

Based on the numerical results in Table 2.1, we make the following conclusions. In QMC,

the AR algorithm has better efficiency than the smoothed algorithms SAR1, 4,and SAR2, 5, by

approximately factors between 2 and 28. A part of the improved efficiency is due to the faster

computing time of the AR algorithm. However, the AR algorithm also provides lower standard

deviation for all samples. In the case of MC, the AR algorithm has still better efficiency, but with

a smaller factor of improvement.

Table 2.1: Comparison of acceptance-rejection algorithm AR with its smoothed versions
SAR1 and SAR2, in terms of sample standard deviation and efficiency (in parenthesis).

N
MC QMC

CR SAR1 SAR2 AR CR SAR1 SAR2 AR

256 3.1e−2 8.8e−4 8.8e−4 3.2e−4 2.7e−3 7.0e−4 7.3e−4 1.5e−4

(1) (211) (317) (3972) (57) (266) (255) (7233)

1024 1.6e−2 2.7e−4 2.3e−4 1.4e−4 6.2e−4 2.1e−4 2.2e−4 7.8e−5

(1) (652) (1252) (5829) (284) (686) (656) (6359)

4096 8.8e−3 7.8e−5 8.8e−5 8.0e−5 1.6e−4 5.0e−5 5.0e−5 2.6e−5

(1) (2595) (2600) (5610) (1430) (3872) (3872) (20308)

16384 3.9e−3 3.6e−5 3.5e−5 4.2e−5 4.2e−5 1.3e−5 1.2e−5 9.6e−6

(1) (2492) (2786) (3900) (3900) (9900) (12350) (25594)

26

CHAPTER 3

GENERATING DISTRIBUTIONS USING THE

ACCEPTANCE-REJECTION METHOD

3.1 Introduction

In this chapter we will present QMC algorithms based on acceptance-rejection for generating

normal, beta, and gamma distributions, and numerically compare them with their counterparts

based on the inverse transformation method. In all the numerical results, Mersenne twister [43]

is used for Monte Carlo, and random-start Halton sequences ([51], [64]) are used for quasi-Monte

Carlo.

3.2 Generating normal distribution

Generation of the normal distribution is arguably one of the most common procedures in sim-

ulation. There are many algorithms for generating the normal distribution, including various ap-

proximations for the inverse transformation method, the Box-Muller method, and a fast algorithm

known as the ziggurat method by Marsaglia [42]. The ziggurat method involves the acceptance-

rejection and composition methods. In this section, we will provide a QMC version of this method.

We will also consider a “textbook example” for generating the normal distribution from the ex-

ponential distribution with parameter 1, exp(1), by acceptance-rejection (Ross [59], page 70). We

provide a QMC version of this method in Algorithm 5.

To generate random variable Z from normal distribution, Z ∼ N (0, 1), first we generate |Z|,

then let Z = |Z| or Z = −|Z| with probability p = .5. The density function of |Z| is

f(x) =
2√
2π
e−x

2/2, x > 0.

Using the acceptance-rejection method, we choose g(x) as the density function of the exponential

distribution,

g(x) = e−x, x > 0.

27

Thus, the constant C = sup
x>0

f(x)

g(x)
=
√

2e/π, and the function h(x) = e−(x−1)
2/2. The CDF of g(x)

is

G(x) = 1− e−x,

and its inverse

G−1(x) = − log(1− x).

Therefore

h(G−1(x)) = e−(log(1−x)+1)2/2.

Algorithm 6 QMC Acceptance-Rejection for generating X ∼ N (0, 1)

1. Generate a low-discrepancy sequence ω on (0, 1)3

ω = {(ui, vi, wi) ∈ (0, 1)3, i = 1, 2, ...}

2. For i = 1, 2, ...

• Generate X ∼ exp(1) by setting X = − ln(ui)

• If ln vi ≤ −(X − 1)2/2

– If wi < .5 accept X

– Otherwise accept −X

• Otherwise reject X

3. Stop when the necessary number of points have been accepted.

There is another method to generate from the normal distribution: the ziggurat method. This

method was introduced by Marsaglia and Tsang [42].

Algorithm 7 Ziggurat Algorithm

1. Generate a random integer i from {0, 1, 2, ..., n− 1}

2. Generate a random number U1 from U(0, 1)

(a) If i = 0 set X = U1V
f(xn)

• If X < xn return X

• Else generate X from the tail, (Marsaglia [41])

(b) Else set X = U1xi

28

• If X < xi−1 return X

• Else generate a random number U2 from U(0, 1), if [f(xi−1−f(xi)]U2 < f(X)−f(xi)

return X

3. Go to step 1

Some authors (see, for example, [35]) observed that the accuracy of the algorithm can be improved,

at the expense of some computing time, by removing some time saving tricks used in [42] where a

single random number was used in multiple decisions. We follow the approach of [35] in designing

a QMC version of the ziggurat algorithm, which is given by Algorithm 8.

Algorithm 8 QMC Ziggurat for generating X ∼ N (0, 1)

1. Initialization:

• N = 128, and V = 9.91256303526217e−3

• {xi}: xN = R = 3.442619855899, and xi = f−1(V/xi+1 +f(xi+1)) for i = (N −1), (N −
2), ..., 0

• {fi}: fi = f(xi), for i = 0, ..., N

• {wi}: w0 = V/F (R), and wi = xi for i = 1, 2, ..., N

• {ki}: k0 = Rf(R)/V , and ki = xi−1/xi for i = 1, ..., N

2. Generate a low-discrepancy sequence ω on (0, 1)5

ω = {(u(1)j , u
(2)
j , u

(3)
j , u

(4)
j , u

(5)
j), j = 1, 2, ...}

3. For j = 1, 2, ...

• Set i = Floor (u
(1)
j N)

• Set U = 2u
(2)
j − 1, X = Uwi

• If |U | < ki return X

• Else if i = 0 (generating X from the tail)

– set X = − log(u
(3)
j)/R, Y = − log(u

(4)
j)

– If 2Y < X2

∗ If U > 0 return X +R

∗ Else return −(X +R)

• Else if (fi + u
(5)
j (fi−1 − fi)) < f(X) return X

29

4. Stop when the necessary number of points have been accepted.

Table 3.1 presents an empirical comparison of the original ziggurat method by Marsaglia [42] (Al-

gorithm 7) with the Modified Ziggurat QMC algorithm (Algorithm 8) and the QMC Acceptance-

Rejection algorithm (Algorithm 6). To compare the algorithms, we generate 106 random numbers

from the normal distribution using each algorithm, and compute the Anderson-Darling statistic of

the generated sample, and record the computing time. We define the efficiency of an algorithm

by the product of the Anderson-Darling statistic and computing time. As before, we normal-

ize efficiency by the original ziggurat algorithm. Table 3.1 reports the Anderson-Darling values,

computing time, and relative efficiencies.

Table 3.1: N = 1, 000, 000 random numbers from standard normal distribution

Algorithms
Ziggurat Modified Ziggurat AR

(QMC) (QMC)

A2 1.226 0.095 0.004

Time (s) 0.02 0.21 0.32

Eff 1 1.23 17.13

We make the following observations:

• The Modified Ziggurat (QMC) method (Algorithm 8) has slightly better efficiency than the

Ziggurat, by a factor of 1.23. This better efficiency is due to the fact that QMC offers better

accuracy relative to computing time.

• Perhaps surprisingly, Acceptance-Rejection (QMC) method (Algorithm 6) has significantly

better efficiency than Ziggurat, by about a factor of 17.

3.3 Generating beta distribution

The beta distribution, B(α, β), has the density function

f(x) =
xα−1(1− x)β−1

B(α, β)
, 0 < x < 1, (3.1)

where α, β > 0 are shape parameters, and B(α, β) is the beta function,

B(α, β) =

∫ 1

0
tα−1(1− t)β−1dt. (3.2)

30

There are different algorithms for the generation of the beta distribution B(α, β) depending on

whether min(α, β) > 1, max(α, β) < 1, or neither. We will use the algorithm of Atkinson and

Whittaker, AW , [22] for max(α, β) < 1, and the algorithm of Cheng [22] for min(α, β) > 1 for

beta distribution. The algorithm uses a combination of composition, inverse transformation, and

acceptance-rejection methods. We next introduce a QMC version of these algorithms.

3.3.1 Beta, B(α, β), max(α, β) < 1

Atkinson and Whittaker [22] introduced the algorithm to generate variables from beta distri-

bution, B(α, β), with the assumption that the two beta parameters are less than 1.

Algorithm 9 QMC-AW for generating X ∼ B(α, β) distribution where max(α, β) < 1.

1. Input parameters α, β

2. Set t = 1/[1 +
√
β(1− β)/α(1− α)], p = βt/[βt+ α(1− t)]

3. Generate a low-discrepancy sequence ω on (0, 1)2

ω = {(ui, vi) ∈ (0, 1)2, i = 1, 2, ...}

4. For i = 1, 2, ...

• Set Y = − log ui

• If vi ≤ p

– X = t(vi/p)
1/α

– If Y ≥ (1− β)(t−X)/(1− t), accept X

– If Y ≥ (1− β) log((1−X)/(1− t)), accept X

– Otherwise reject X

• Otherwise

– X = 1− (1− t)[(1− ui)/(1− p)]1/β

– If Y ≥ (1− α)(X/t− 1), accept X

– If Y ≥ (1− α) log(X/t), accept X

– Otherwise reject X

5. Stop when the necessary number of points have been accepted.

31

In Table 3.2 we consider several values for α and β that are less than one. AR MC and AR

QMC in the table refer to the MC version of Algorithm AW, and its QMC version (Algorithm 9),

respectively. The inverse transformation method1 with MC and QMC is labeled as Inverse MC

and Inverse QMC. We generate 105 numbers from each distribution, and record the computing

time and the Anderson-Darling statistic of the sample, in Table 3.2.

Table 3.2: Comparison of inverse and acceptance-rejection algorithms, Algorithm AW (for
MC) and Algorithm 9 (QMC-AW), in terms of the computing time and the Anderson-
Darling statistic of the sample for the Beta distribution when N = 105 numbers are
generated. The percentage points for the A2 statistic at 5% and 10% levels are 2.49 and
1.93, respectively.

Algorithms
Inverse AR Inverse AR

MC MC QMC QMC

B(0.3, 0.3)
Time(s) 0.32 0.04 0.32 0.04
A2 4.07e-1 1.35 1.13e-1 8.7e-4

B(0.3, 0.5)
Time(s) 0.33 0.03 0.33 0.03
A2 1.67 7.65e-1 8.64e-2 2.24e-3

B(0.3, 0.7)
Time(s) 0.34 0.03 0.34 0.03
A2 1.65 8.81e-1 1.33e-1 7.5e-4

B(0.5, 0.3)
Time(s) 0.33 0.03 0.33 0.03
A2 2.77 8.39e-1 9.22e-2 6.4e-4

B(0.5, 0.5)
Time(s) 0.32 0.03 0.32 0.02
A2 2.34 5.68e-1 2.1e-4 2.56e-3

B(0.5, 0.7)
Time(s) 0.33 0.03 0.34 0.02
A2 6.24e-1 5.47e-1 2.5e-4 5.5e-4

B(0.7, 0.3)
Time(s) 0.33 0.03 0.33 0.03
A2 6.86e-1 7.12e-1 1.35e-1 1.49e-3

B(0.7, 0.5)
Time(s) 0.33 0.03 0.33 0.03
A2 1.92 2.15 2.7e-4 8.9e-4

B(0.7, 0.7)
Time(s) 0.33 0.03 0.35 0.03
A2 8.99e-1 2.06 1.6e-4 5.7e-4

We make the following observations:

1The inverse transformation code we used is a C++ code written by John Burkardt (available at
http://people.sc.fsu.edu/∼jburkardt/), and it is based on algorithms by Cran et. al. [14] and Majumder and Bhat-
tacharjee [40]. The performance of the inverse transformation method greatly depends on the choice of tolerance for
the method. A large tolerance can result in values that fail the Anderson-Darling goodness-of-fit test. A smaller
tolerance increases the computing time. Therefore, in our numerical results, we set tolerances for different range of
parameter values small enough so that the results pass the goodness-of-fit test. For α, β < 1, we set the tolerance to
10−8.

32

1. The Acceptance-Rejection algorithm runs about 10 times faster than the inverse transforma-

tion algorithm, in both MC and QMC implementations. There is no significant difference in

the computing times between MC and QMC, for each algorithm.

2. Inverse MC fails the Anderson-Darling test at the 5% level for B(0.5, 0.3). There are several

Anderson-Darling values close to the 10% percentage point 1.93 for Inverse MC and AR

MC methods. Switching to QMC improves the Anderson-Darling values significantly for

both inverse and acceptance-rejection, implying better fit of the samples to the theoretical

distribution. The Inverse QMC Anderson-Darling values range between 10−1 and 10−4. The

AR QMC Anderson-Darling values are more stable, and range between 10−3 and 10−4.

3.3.2 Beta, B(α, β), min(α, β) > 1

The BB algorithm of Cheng [22] used to generate random variables from the beta distribution

generates beta variables from the second type, called B2(α, β), which has the density function

f2(x) =
xα−1

B(α, β)(1 + x)α+β
, x > 0 (3.3)

Theorem 16 If Y is a beta random variable of second type, Y ∼ B2(α, β), then X =
Y

1 + Y
is a

beta random variable, X ∼ B(α, β).

Proof

We need to prove that P (X ≤ x∗) = F (x∗).

We have

P (X ≤ x∗) = P (
Y

1 + Y
≤ x∗) = P (Y ≤ x∗

1− x∗
) = F2(

x∗

1− x∗
) =

∫ x∗
1−x∗

−∞
f2(y)dy.

By changing variable x = y
1+y , we have y = x

1−x , dy = (1− x)−2dx, and

∫ x∗
1−x∗

−∞
f2(y)dy =

∫ x∗

−∞
f2(

x

1− x
)(1− x)−2dx =

∫ x∗

−∞
f(x)dx = F (x∗).

This completes the proof.

Using Theorem 16, Cheng [22] generates a random variable Y ∼ B2(α, β), then returns
Y

1 + Y
∼

B(α, β). He uses the Burr XII density (in Section 3.2.1) as a proportional function to f2(x)

g(x) = λµ
xλ−1

(µ+ xλ)2
, G(x) =

xλ

µ+ xλ
, (3.4)

33

where µ = (α/β)λ, and λ =

√
2αβ − (α+ β)

α+ β)− 2
.

The acceptance-rejection constant is

C = sup
(0,∞)

f2(x)

g(x)
=

4ααββ

λB(α, β)(α+ β)α+β
. (3.5)

The constant C is bounded by 4/e ∼ 1.47 for min(α, β) > 1. The acceptance-rejection function is

h(x) =
xa−λ(µ+ xλ)2(α+ β)α+β

4(x+ 1)α+βαα+λββ−λ
. (3.6)

Let a = α+ β, b =
√

(a− 2)/(2αβ − a), γ = α+ b−1, and u, v ∼ (0, 1).

Set V = b ln(u/(1− u)), and W = αeV . We have y = G−1(u) ∼ g(x), and the acceptance-rejection

test v ≤ h(y) is equivalent to D ≥ 0, where

D = a ln(a/(β +W)) + γV − ln 4− ln(u2v). (3.7)

Since the calculations of ln(a/(β +W)) and ln(u2v) are slow, Cheng [22] uses the two preliminary

tests. From the fact that ln(x) is a concave function

θx− ln θ − 1 ≥ lnx, θ > 0.

Therefore,

D = a ln a− a ln(b+W)) + γV − ln 4− ln(u2v)
≥ a ln a− (θ(β +W)− ln θ − 1) + γV − ln 4− ln(u2v) ≡ D1

≥ a ln a− (θ(β +W)− ln θ − 1) + γV − ln 4− (θu2v − 1) ≡ D2

Cheng [22] suggested the choice θ = 5.

Algorithm 10 BB∗, for generating X ∼ B(α, β) where min(α, β) > 1

1. Input beta parameters α, β

2. Set a = min(α, β), b = max(α, β), c = a+ b, d =
√

(c− 2)/(2ab− c), γ = a+ d−1

3. Generate a low-discrepancy sequence ω on I2

ω = {(ui, vi) ∈ I2, i = 1, 2, ...}

34

4. For i = 1, 2, ...

• Set V = d ln(ui/(1− ui)), W = aeV , Z = u2i vi, R = γV − 1.3862944, S = a+ R −W ,

(the constant is ln 4)

– If S + 2.609438 ≥ 5Z, accept (The constant is 1 + ln 5).

– Set T = lnZ . If S ≥ T , accept

– If R+ a ln(c/(b+W)) < T , reject

• If accept

– If a = α return X = W/(b+W)

– Otherwise return X = b/(b+W)

In Table 3.3 we consider several values for α and β that are bigger than one. AR MC and AR

QMC in the table refer to the MC version of Algorithm AW, and its QMC version (Algorithm 10),

respectively. The inverse transformation method2 with MC and QMC is labeled as Inverse MC

and Inverse QMC. We generate 105 numbers from each distribution, and record the computing

time and the Anderson-Darling statistic of the sample, in Table 3.3.

We make the following observations:

1. The Acceptance-Rejection QMC (Algorithm 10) is as fast as, or faster than, the MC im-

plementation of Algorithm 7. The inverse transformation algorithms run about 10 times

slower.

2. The Acceptance-Rejection QMC (Algorithm 10) has consistently the best efficiency. The

efficiency improvements it provides over Inverse QMC can be as large as 6,099, although for

one case when α = β = 0.5, the efficiency of AR QMC and Inv QMC are very similar.

3.4 Generating the gamma distribution

The gamma distribution, G(α, β), has the following property: if X is a random variable from

G(α, 1) then βX is the random variable from G(α, β). Therefore, we only need algorithms to

2The inverse transformation code we used is a C++ code written by John Burkardt
(http://people.sc.fsu.edu/∼jburkardt/), and it is based on algorithms by Cran et. al. [14] and Majumder
and Bhattacharjee [40]. The performance of the inverse transformation method greatly depends on the choice of
tolerance for the method. A large tolerance can result in values that fail the Anderson-Darling goodness-of-fit test.
A smaller tolerance increases the computing time. Therefore, in our numerical results, we set tolerances for different
range of parameter values small enough so that the results pass the goodness-of-fit test. For α, β > 1, we set the
tolerance to 10−6.

35

Table 3.3: Comparison of inverse and acceptance-rejection algorithms, Algorithm BB*
(for min(a, b) > 1 and Algorithm 10 (QMC-AW), in terms of accuracy and efficiency for
the Beta distribution when N = 105 numbers are generated.

Algorithms
Inverse AR Inverse AR

MC MC QMC QMC

B(1.5, 1.5)
Time(s) 0.31 0.02 0.31 0.03
A2 .85449 1.12017 .00015 .00144

B(1.5, 2.0)
Time(s) .26 0.02 .27 0.02
A2 .56564 .80538 .00016 .00131

B(1.5, 2.5)
Time(s) .36 .02 .3 .03
A2 0.69054 .59326 .00025 .00463

B(2.0, 2.0)
Time(s) 0.18 0.03 0.18 0.02
A2 2.12372 1.07203 .00016 .00075

B(2.0, 2.5)
Time(s) 0.24 0.03 0.24 0.02
A2 .64079 .93179 .00012 .00096

B(2.0, 3.0)
Time(s) 0.19 0.02 0.19 0.02
A2 1.69070 .36285 .00021 .00115

B(2.5, 2.0)
Time(s) 0.24 0.02 0.24 0.02
A2 .85548 .30792 .00010 .00318

B(2.5, 2.5)
Time(s) 0.29 0.02 0.29 0.02
A2 1.44800 .36973 .00012 .00101

B(2.5, 3.0)
Time(s) 0.24 0.03 0.25 0.02
A2 .88369 .39129 .00012 .00146

generate random variables from G(α, 1), which has the density function

f(x) =
xα−1e−x

Γ(α)
, α > 0, x ≥ 0. (3.8)

Here Γ is the gamma function

Γ(z) =

∫ ∞
0

e−ttz−1dt, (3.9)

where z is a complex number with positive real part.

We will consider two algorithms for generating the gamma distribution and present their QMC

versions. The algorithms are:

• Algorithm CH by Cheng [13], which is applicable when α > 1,

• Algorithm GS* by Ahrens-Dieter [22], which is applicable when α < 1.

Next we introduce the QMC versions of these algorithms.

36

3.4.1 Gamma, G(α, 1) with α > 1

Cheng [13] developed the algorithm to generate variables from gamma distribution, G(α, 1), for

the case α > 1.

Algorithm 11 QMC-CH for generating X ∼ G(α, 1) distribution where α > 1

1. Input gamma parameter α

2. Set a = (2α− 1)−1/2, b = α− log 4, c = α+ a−1

3. Generate a low-discrepancy sequence ω on (0, 1)2

ω = {(ui, vi) ∈ (0, 1)2, i = 1, 2, ...}

4. For i = 1, 2, ...

• Set Y = a log(ui
1−ui), X = αeY , Z = u2i vi, R = b+ cY −X

• If R+ 2.5040774− 4.5Z ≥ 0, accept X

• If R ≥ logZ, accept X

• Otherwise reject X

5. Stop when the necessary number of points have been accepted.

In Table 3.4 we consider several parameters for α in G(α, 1) for α values greater than one. The

parameters are chosen roughly in the range that was observed in the simulation of the variance

gamma option pricing problem we will discuss later.

We generate 106 numbers from the gamma distribution using Algorithm 11 and compute the

execution time of the algorithm and the Anderson-Darling statistic of the sample. The inverse

transformation method3 with MC and QMC is labeled as Inverse MC and Inverse QMC.

We make the following observations based on Table 3.4:

1. The AR QMC algorithm runs faster than the Inverse QMC algorithm by approximately

factors between 30 and 48. Interestingly, the AR QMC algorithm is slightly faster than the

AR MC algorithm for each case. Similarly, the AR MC is faster than Inverse MC, at about

the same factors of speed up.

3The inverse transformation code we used is a C++ code written by John Burkardt, and it is based on two
algorithms by Lau [34] and Mcleod [44]. Similar to the beta distribution, the performance of the inverse transformation
method greatly depends on the choice for the tolerance parameter. In our numerical result we set the tolerance to
10−6 for α > 1.

37

Table 3.4: Comparison of inverse and acceptance-rejection algorithms, Algorithm CH (for
MC) and Algorithm 11 (QMC-CH), in terms of the computing time and the Anderson-
Darling statistic of the sample for the Gamma distribution when N = 106 numbers are
generated. The percentage points for the A2 statistic at 5% and 10% levels are 2.49 and
1.93, respectively.

Algorithms
Inverse AR Inverse AR

MC MC QMC QMC

G(1.6, 1)
Time(s) 10.62 0.30 10.60 0.29
A2 2.90e-1 1.09 1.38e-4 8.6e-4

G(2.0, 1)
Time(s) 10.92 0.29 8.21 0.28
A2 8.78e-1 7.52e-1 1.93e-4 1.78e-3

G(2.4, 1)
Time(s) 12.32 0.29 11.74 0.28
A2 9.57e-1 1.83 1.0e-4 2.2e-4

G(2.8, 1)
Time(s) 12.41 0.28 13.17 0.27
A2 1.01 5.09e-1 1.1e-4 2.34e-3

G(3.2, 1)
Time(s) 12.62 0.28 12.64 0.27
A2 7.83e-1 5.67e-1 1.3e-4 1.21e-3

2. All samples pass the Anderson-Darling test at the 5% level. Switching to QMC drastically

lowers the Anderson-Darling values: Inverse QMC values are around 10−4, and AR QMC

values range between 10−3 and 10−4.

3.4.2 Gamma, G(α, 1) with α < 1

We will present the algorithm written by Ahrens-Dieter [22] to generate variables from gamma

distribution, G(α, 1), for α < 1.

Algorithm 12 QMC-GS* for generating X ∼ G(α, 1) distribution where α < 1

1. Input gamma parameter α

2. Set b = (α+ e)/e

3. Generate a low-discrepancy sequence ω on (0, 1)3

ω = {(ui, vi, wi) ∈ (0, 1)3, i = 1, 2, ...}

4. For i = 1, 2, ...

• Set Y = bui

• If Y ≤ 1, set X = Y 1/α

38

– Set W = − log vi

– If W ≥ X accept X

– Otherwise reject X

• Otherwise

– Set X = − log[(b− Y)/α]

– Set W = w
1/(α−1)
i

– If W ≤ X accept X

– Otherwise reject X

5. Stop when the necessary number of points have been accepted.

Similar to the Table 3.4, in Table 3.5, we consider several parameters for α less than one in

G(α, 1). We generate 106 numbers from the gamma distribution using Algorithm 12, and compute

the execution time of the algorithm and the Anderson-Darling statistic of the sample. The inverse

transformation method4 with MC and QMC is labeled as Inverse MC and Inverse QMC.

Table 3.5: Comparison of inverse and acceptance-rejection algorithms, Algorithm GS* (for
MC) and Algorithm 12 (QMC-GS*), in terms of the computing time and the Anderson-
Darling statistic of the sample for the Gamma distribution when N = 106 numbers are
generated. The percentage points for the A2 statistic at 5% and 10% levels are 2.49 and
1.93, respectively.

Algorithms
Inverse AR Inverse AR

MC MC QMC QMC

G(0.2, 1)
Time(s) 16.77 0.25 16.77 0.24
A2 1.73 5.18e-1 1.30 2.8e-4

G(0.4, 1)
Time(s) 13.47 0.33 13.49 0.35
A2 6.76e-1 6.75e-1 4.28e-3 3.5e-4

G(0.6, 1)
Time(s) 7.74 0.35 7.73 0.36
A2 1.64 1.01 5.15e-2 6.2e-4

G(0.8, 1)
Time(s) 8.07 0.36 8.08 0.36
A2 5.18e-1 1.29 6.99e-3 3.1e-4

We make the following observations based on Table 3.5:

4The inverse transformation code we used is a C++ code written by John Burkardt, and it is based on two
algorithms by Lau [34] and Mcleod [44]. Similar to the beta distribution, the performance of the inverse transformation
method greatly depends on the choice for the tolerance parameter. In our numerical results, we set tolerances for
different range of values for α small enough so that the results pass the goodness-of-fit test. For example, for
0.25 > α ≥ 0.20, we set the tolerance to 10−14. The convergence of the inverse transformation method was especially
problematic for smaller α, for example, when α < 0.1.

39

1. The AR QMC algorithm runs faster than the Inverse QMC algorithm by approximately

factors between 22 and 70. For smaller α values, the convergence of the inverse transformation

method is particularly slow.

2. All samples pass the Anderson-Darling test at the 5% level. As before, switching to QMC

drastically lowers the Anderson-Darling values, especially for AR QMC whose values are

around 10−4. The Inverse QMC values range between 1.30 and 10−3.

40

CHAPTER 4

THE VARIANCE GAMMA MODEL IN

DERIVATIVE PRICING

Our main motivation is to develop fast and accurate QMC algorithms for the simulation of a

particular Lévy process known as the variance gamma model ([38], [39]). This model is used in

financial mathematics, and its QMC simulation is expensive due to the inverse transformation

method. There are several ways to simulate the variance gamma model [24] and the methods

involve generation of normal, beta, and gamma distributions.

4.1 Variance gamma process

In this section we discuss two ways to define the VG process; one as a Brownian motion with

constant drift and volatility with a random time change, and one as the difference of two indepen-

dent increasing gamma processes. The section is based on a paper by Madan, Carr and Chang

[38].

4.1.1 Brownian motion

We first consider some concepts of the Brownian motion that is necessary for the introduction

of the Gamma process in the subsequent sections.

Definition 7 A stochastic process B = {B(t) = B(t; θ, σ), t ≥ 0} is a Brownian motion with the

drift parameter θ and the variance parameter σ if

1. B(0) = 0.

2. The process B has independent, stationary increments.

3. B(t+h)−B(t) ∼ N (θh, σ2h), where N (µ, σ2) denotes the normal distribution with the density

function f(x) =
1√

2πσ2
e−

(x−µ)2

2σ2 , x ∈ R.

41

4.1.2 Gamma process

Definition 8 A process G = {G(t) = G(t;µ, ν), t ≥ 0} is a Gamma process with mean rate µ > 0

and variance rate ν > 0 if

1. G(0) = 0.

2. The process G has independent, stationary increments.

3. gh = G(t + h) − G(t) ∼ G(µ2h/ν, ν/µ) for all t ≥ 0, and h > 0, where G(α, β) denotes the

Gamma distribution with the density function given by

f(z) =
zα−1e−z/β

βαΓ(α)
for α, β > 0, z ≥ 0.

The density of the increment gh = G(t+ h)−G(t) is then given by

fh(g) =
(µ
ν

)µ2h
ν g

µ2h
ν
−1 exp(−gµ

ν)

Γ
(
µ2h
ν

) , g > 0 (4.1)

where Γ(x) is the gamma function.

The gamma density has the characteristic function

φG(t)(u) = E[exp(iuG(t))] =

(
1

1− iu νµ

)µ2t
ν

. (4.2)

For convenience, we just write g instead of gh for the gamma time change, i.e, g = gh = G(t+ h)−

G(t).

4.1.3 Variance gamma as time-changed Brownian motion

The VG process X(t;σ, ν, θ) is defined as

X(t;σ, ν, θ) = B(G(t; 1, ν); θ, σ)

where B(t; θ, σ) is a Brownian motion and G(t; 1, ν) is a Gamma process with a unit mean rate.

The VG process, in other words, is a Brownian motion evaluated at a time given by a Gamma

process. The density function of the VG process at time t is given by

fX(t)(X) =

∫ ∞
0

1

σ
√

2πg
exp

(
−(X − θg)2

2θ2g

)
g
t
ν
−1 exp(− g

ν)

ν
t
ν Γ(tν)

dg. (4.3)

The characteristic function for the VG process, φX(t)(u) = E[exp(iuX(t))], is

φX(t)(u) =

(
1

1− iθνu+ θ2νu2

2

) t
ν

. (4.4)

42

4.1.4 Variance gamma as the difference of two gamma processes

The V G process can also be writen as the difference of two independent increasing gamma

processes Gp(t;µp, νp) and Gn(t;µn, νn):

X(t;σ, ν, θ) = Gp(t;µp, νp)−Gn(t;µn, νn) (4.5)

where
µp = 1

2

√
θ2 + 2σ2/ν + θ

2

µn = 1
2

√
θ2 + 2σ2/ν − θ

2

νp = µ2pν

νn = µ2nν.

(4.6)

We can derive the formulas (4.6) by using the characteristic functions for two gamma processes

(see (4.2)):

φGp(t)(u) =

(
1

1− iu νpµp

)µ2pt

νp

,

and

φ−Gn(t)(u) =

(
1

1 + iu νnµn

)µ2nt

νn

.

First, the characteristic function for the VG process is the product of the two characteristic functions

φX(t)(u) =

(
1

1− iu νpµp

)µ2pt

νp
(

1

1 + iu νnµn

)µ2nt

νn

. (4.7)

Then, from equations (4.4) and (4.7), the parameters must satisfy the equations

µ2p
νp

=
µ2n
νn

=
1

ν
,

νp
µp
− νn
µn

= θν,

νp
µp

νn
µn

= θ2ν/2.

(4.8)

Finally, solving the system of equations in (4.8) gives the formulas in (4.6).

43

4.2 Simulating the variance gamma process

We consider two methods to simulate the VG process. The first method is to generate VG

process as a time change Brownian motion (TCBM), and the second method is to generate VG

process as the difference of two gamma processes (DTGP). Using the first method, based on the fact

that the VG process conditioning on the increment of time change gh, gh = G(t+h, 1, ν)−G(t, 1, ν),

is Brownian motion with mean θgh and variance σ
√
gh, we first simulate the increment time change

gh from the G(h/ν, ν) distribution, then simulate X(t) conditioned on gh as the Brownian motion

process. In each method, we will apply two techniques for simulating sample paths of the VG

process: the sequential sampling and the bridge sampling. The algorithms given below are based

on the algorithms in Avramidis and L’Ecuyer, [2], Deville, [19], Ribeiro and Webber, [58], and Fu

[24].

4.2.1 Sequential sampling

Suppose that we need to generate the VG sample path X(t) on [0,T] at discrete time points

0 = t0 < t1 < ... < TN−1 < TN = T . For simplicity, we consider uniform discretization, ti − ti−1 =

∆t = T/N for i = 1 to N . The sequential sampling method generates X(t1), X(t2), ..., X(tN)

in sequence. In the TCBM method, we first generate the time change from the gamma process,

G(t, 1, ν),

g = G(ti, 1, ν)−G(ti−1, 1, ν) ∼ G(∆t/ν, ν).

Algorithm 13 for simulating the VG process by TCBM sequential sampling (TCBM(S)) is given

next.

Algorithm 13 TCBM(S)

1. Initialization:

• VG parameters: θ, σ, ν

• Size of sample path N , time to maturity T

• X(t0) = 0, ∆t = T/N

2. Simulation: for i = 1 to N

• Generate g ∼ G(∆t/ν, ν), Zi ∼ N (0, 1)

• Calculate X(ti) = X(ti−1) + θg + σ
√
gZi

44

3. Output: (Xt), t = t0, ..., tN

The algorithm for simulating the VG process by DTGP sequential sampling (DTGP(S)) is described

by Algorithm 14.

Algorithm 14 DTGP(S)

1. Initialization:

• VG parameters: θ, σ, ν

• Size of sample path N , time to maturity T

• X(t0) = 0, ∆t = T/N

• Calculate the parameters of two gamma processes µp, νp, µn, νn using formula (4.6)

2. Simulation: for i = 1 to N

• Generate g+ ∼ G(∆tµ
2
p/νp, νp/µp); g

− ∼ G(∆tµ
2
n/νn, νn/µn)

• Return X(ti) = X(ti−1) + g+ − g−

3. Output: (Xt), t = t0, ..., tN

4.2.2 Bridge sampling

For an arbitrary time t, 0 ≤ t1 < t < t2, Xt can be sampled from the conditional distribution

given (X(t1) and X(t2)). For example, suppose we need to generate the VG sample path X(t) on

[0,T] at discrete time points 0 = t0 < t1 < ... < TN−1 < TN = T , where N = 2k for k = 0, 1, 2,

For simplicity, we assume the discretization is uniform; ti − ti−1 = ∆t = T/N for i = 1 to N .

The bridge sampling can be done by generating the first two points at times t0 and tN . We then

stratify successively at time tN/2, t3N/4, tN/4, t7N/8, t5N/8, t3N/8, tN/8, and so on, until all points

are generated.

We apply the property of conditional Brownian motion, B(t) = B(t, θ, σ), and gamma process,

G(t) = G(t, µ, ν). For an arbitrary time t, 0 ≤ t1 < t < t2, the conditional distribution of B(t) given

B(t1) and B(t2) is the normal distribution N (aB(t1) + (1− a)B(t2), a(t− t1)σ2), where a = t2−t
t2−t1 .

The conditional distribution of G(t) given G(t1) and G(t2) is the same as G(t1) + [G(t2)−G(t1)]Y ,

where Y ∼ B(t− t1)µ2/ν, (t2 − t)µ2/v), B(α, β) is the beta distribution.

The algorithm for simulating the VG process by TCBM bridge sampling (TCBM(B)) is pre-

sented in Algorithm 15.

45

Algorithm 15 TCBM(B)

1. Initialization:

• VG parameters: θ, σ, ν;

• Size of sample path N = 2k, time to maturity T

• G(t0) = 0; X(t0) = 0, ∆t = T/N

2. Simulation:

• Generate G(tN) ∼ G(tN/ν, ν)

• Generate X(tN) ∼ N (θG(tN), σ2G(tN))

• For l = 1 to k

– m = 2k−l

– For j = 1 to 2l−1

∗ i = (2j − 1)m

∗ d = (ti − ti−m)/ν

∗ Generate Y ∼ B(d, d)

∗ G(ti) = G(ti−m) + [G(ti+m −G(ti)]σ
2Y

∗ Generate Z ∼ N (0, [G(ti+m)−G(ti)]σ
2Y)

∗ X(ti) = Y X(ti+m) + (1− Y)X(ti−m) + Z

3. Output: (Xt), t = t0, ..., tN

The algorithm for simulating the VG process by DTGP bridge sampling (DTGP(B)) is presented

in Algorithm 16.

Algorithm 16 DTGP(B)

1. Initialization:

• VG parameters: θ, σ, ν

• Size of sample path N = 2k, time to maturity T

• Calculate the parameters of two gamma processes: µp, νp, µn, νn using formula (4.6)

• Gp(t0) = 0, Gn(t0) = 0, ∆t = T/N

• Generate Gp(tN) ∼ G(tNµ
2
p/νp, νp/µp)

• Generate G(tN) ∼ G(tNµ
2
n/νn, νn/µn)

46

2. Simulation:

• For l = 1 to k

– m = 2k−l

– For j = 1 to 2l−1

∗ i = (2j − 1)m

∗ d = (ti − ti−m)/ν

∗ Generate Y + ∼ B(d, d); Y − ∼ B(d, d)

∗ Gp(ti) = Gp(ti−m) + [Gp(ti+m −Gp(ti)]Y +

∗ Gn(ti) = Gn(ti−m) + [Gn(ti+m −Gn(ti)]Y
−

∗ X(ti) = Gp(ti)−Gn(yi)

3. Output: (Xt), t = t0, ..., tN

4.3 The variance gamma model in option pricing

The stock price process for the VG model is:

S(t) = S(0) exp((m+ ωS)t+X(t; νS , θS , σS)) (4.9)

where m is the mean rate of return of the stock under the statistical probability measure, and the

constant ωS is chosen so that there is no arbitrage. The process X(t; νS , θS , σS) is the VG process.

By the Fundamental Theorem of Asset Pricing [17], the discounted asset price, e−mtS(t), must be

a martingale, which requires E[e−mtS(t)] = S(0), or equivalently E[eX(t)] = e−ωSt . Thus, we have

ωS = − ln(φX(t)(−i)) =
ln(1− θSνS − σ2SνS/2)

νS
,

and the subscripts “S” are used to express that the parameters are the statistical parameters.

Note that there is no unique martingale measure for the VG process due to the pure jump

component. Gerber and Shiu [25] used the Esscher transform to find an equivalent martingale

measure of the discounted stock prices of stochastic processes with stationary and independent

increments. Yoo [66] used this method to find an equivalent martingale measure of the discounted

stock prices for the VG process. Deville [19] used a method called mean-correcting martingale

measure to obtain an equivalent martingale measure.

Under the risk neutral process, stock price process discounted at the risk free interest rate is a

martingale and so the mean rate of return on the stock under the risk neutral probability measure

47

is the continuously compounded risk free interest rate r. The risk neutral process with no dividends

and constant risk-free interest rate, r, is given by

S(t) = S(0) exp((r + ωRN)t+X(t;σRN , νRN , θRN)) (4.10)

where the constant ωRN is chosen so that the discounted stock price is a martingale, i.e.,

ωRN =
ln(1− θRNνRN − σ2RNνRN/2)

νRN
.

X(t;σRN , νRN , θRN) is the variance gamma process with parameters: σRN , νRN , θRN . For conve-

nience, under the risk neutral process, we omit the subscripts “RN”, and write the risk neutral

process as

S(t) = S(0) exp((r + ω)t+X(t;σ, ν, θ)). (4.11)

The condition for the existence of the martingale is

ω =
ln(1− θν − σ2ν/2)

ν
.

Therefore the VG parameters must satisfy the condition:

θν − σ2ν/2 < 1.

The risk neutral process with dividend, d, can be written as

S(t) = S(0) exp((r − d+ ω)t+X(t;σ, ν, θ)). (4.12)

4.4 MC and QMC methods in option pricing

Suppose the payoff function of an option is HT = HT (ω). The price of the option at time t < T

is

Pt = E[HT e
−r(T−t)]. (4.13)

The price of the option in the VG model can be approximated by constructing a set {ω̂m}m=1,...,M

of discrete sample paths randomly generated using the VG process. Then the approximation P̂t of

Pt is

P̂t = e−r(T−t)
1

M

M∑
m=1

HT (ω̂m). (4.14)

For each discrete sample path for the VG process X(t) over the period [0, T], we use N time steps

0 = t0 < t1 < ... < tN = T . The MC algorithm for calculating the option price in the VG model is:

48

Algorithm 17 European call option pricing in VG

1. Input VG parameters: θ, σ, ν; number of time steps used in the discretization N , time to

maturity T , and initial stock price S0;

2. For i = 1 to M

(a) Simulate the VG processes {X(t)}t=t0,...,tN
(b) Simulate the stock price process, ωi = {S(t)}t=t0,...,tN , using the formula (4.12)

(c) Calculate the payoff HT (ωi)

3. Calculate the option price: P̂0 = e−rT 1
MΣM

i=1HT (ωi).

For the European call option, the payoff function is HT (ω) = max(S(T) −K, 0), where K is the

strike price. In the Monte Carlo method, we use pseudorandom numbers for generating the sample

paths. In the quasi-Monte Carlo method, we use the random start Halton sequence for sampling.

4.5 Bounds on the stock price process

In this section, we present bounds for the underlying stock prices, when they are obtained by

the VG process given as the difference of two gamma processes. Let ζ = ω+ r− d, ζ+ = max(ζ, 0),

ζ− = max(−ζ, 0), then the stock price process in (4.12) can be written as

S(t) = S(0) exp[(ζt+X(t)] = S(0) exp[ζt+Gp(t)−Gn(t)]. (4.15)

Define the upper, Um, and lower, Lm processes over [0, T] by

Um(t) = S(0) exp[ζt+Gp(tm,i)−Gn(tm,i−1]
= S(tm,i−1) exp[ζ(t− tm,i−1) +Gp(tm,i)−Gn(tm,i−1)]

(4.16)

and
Lm(t) = S(0) exp[ζt−Gn(tm,i) +Gp(tm,i−1]

= S(tm,i−1) exp[ζ(t− tm,i−1)−Gn(tm,i) +Gn(tm,i−1)]
(4.17)

for tm,i−1 < t < tm,i, and Lm(tm,i) = Um(tm,i) = S(tm,i), for i = 0, ...,m. Lm and Um are both left

and right discontinuous at the observation time tm,i.

Proposition 1 For every any path, integer m > 0, and all t ∈ [0, T], we have

Lm(t) ≤ Lm+1(t) ≤ S(t) ≤ Um+1(t) ≤ Um(t). (4.18)

49

Avramidis and L’Ecuyer [2] stated this proposition and proved it. In the following, we present a

simpler proof that utilizes the definitions of Lm(t), Um(t) and the properties of gamma process.

Proof

At the observation time tm,i, for 0 ≤ i ≤ m, (4.18) holds by definitions of Lm and Um. For

tm,i−1 < t < tm,i, for 0 ≤ i ≤ m, we have:

Lm(t) = S(0) exp[ζt−Gp(tm,i) +Gp(tm,i−1]
< S(0) exp[ζt−Gp(t) +Gn(t)] = S(t)

(4.19)

since Gp(t) and Gn(t) are increasing gamma functions and tm,i−1 < t < tm,i. Similarly, we have

S(t) < Um(t), therefore, for any integer m > 0, we have:

Lm+1(t) ≤ S(t) ≤ Um+1(t).

Now we prove that Lm(t) ≤ Lm+1(t) and Um+1(t) ≤ Um(t). Recall that by the DTGP(B) algorithm,

at step m+1 we generate S at the observation time ym+1 conditional on S at the observation times

{y0, y1, ..., ym} or {tm,0, tm,1, ..., tm,m}. Let (tm,j−1, tm,j) be the interval that contains the point

ym+1. Then for 0 ≤ i ≤ j− 1, tm+1,i = tm,i, and for j ≤ i ≤ m, tm+1,i+1 = tm,i. Then we only need

to prove Lm(t) ≤ Lm+1(t) for t ∈ (tm,j−1, tm,j) ≡ (tm+1,j−1, tm+1,j+1). Write (tm+1,j−1, tm+1,j+1) =

(tm+1,j−1), tm+1,j) ∪ {tm+1,j} ∪ (tm+1,j , tm+1,j+1). For t = tm+1,j , Lm(t) = Lm+1(t) = S(t) by

definition. For tm+1,j−1 < t < tm+1,j we have

Lm+1(t) = S(tm+1,j−1) exp[ζ(t− tm+1,j−1)−Gn(tm+1,j) +Gn(tm+1,j−1)]
≥ S(tm+1,j−1) exp[ζ(t− tm+1,j−1)−Gn(tm+1,j+1) +Gn(tm+1,j−1)]
= S(tm,j−1) exp[ζ(t− tm,j−1)−Gn(tm,j) +Gn(tm,j−1)]
= Lm(t)

because tm+1,j−1 = tm,j−1, tm+1,j+1 = tm,j , andGn(tm+1,j) < Gn(tm+1,j+1). For t ∈ (tm+1,j , tm+1,j+1)

we have
Lm+1(t) = S(0) exp[ζt−Gn(tm+1,j+1) +Gp(tm+1,j)]

≥ S(0) exp[ζt−Gn(tm+1,j+1) +Gp(tm+1,j−1)]
= S(0) exp[ζt−Gn(tm,j) +Gp(tm,j−1)]
= Lm(t)

since tm+1,j−1 = tm,j−1, tm+1,j+1 = tm,j , and Gp(tm+1,j) > Gp(tm+1,j−1). So Lm(t) ≤ Lm+1(t) for

any t ∈ [0, T]. Similarly, we have Um+1(t) < Um(t), thus (4.18) holds for any positive integer m

and t ∈ [0, T]. This completes the proof.

Define

Lm,i = inf
tm,i−1<t<tm,i

Lm(t)

= S(tm,i−1) exp[−ζ−(tm,i − tm,i−1)−Gn(tm,i) +Gn(tm,i−1)],

50

Um,i = sup
tm,i−1<t<tm,i

Um(t)

= S(tm,i−1) exp[ζ+(tm,i − tm,i−1) +Gp(tm,i)−Gp(tm,i−1)],

L∗m(t) = Lm,i and U∗m(t) = Um,i for tm,i−1 < t < tm,i, and L∗m(tm,i) = U∗m(tm,i) = S(tm,i), for

i = 1, ...,m.

Corollary 4 For every sample path S, any integer m > 0, and all t ∈ [0, T], we have

L∗m(t) ≤ L∗m+1(t) ≤ S(t) ≤ U∗m+1(t) ≤ U∗m(t).

4.6 Bounds on the option price

For each positive integer m, define

=m = (tm,1, Gp(tm,1), Gn(tm.1), ..., tm,m, Gp(tm,m), Gn(tm,m)), (4.20)

and CL,m, CU,m, C
∗
L,m, C

∗
U,m are the discounted payoff functions corresponding to the upper and

lower bounds Lm, Um, L
∗
m, U

∗
m, respectively.

Corollary 5 Suppose that conditional on =m, the payoff, C, is a monotone non-decreasing function

of S(t) for all values of t not in {tm,0, tm,1, ..., tm,m}. Then

C∗L,m ≤ CL,m ≤ C ≤ CU,m ≤ C∗U,m.

If C is (conditionally) non-increasing instead, the reverse inequality holds. In both cases, |C∗U,m −

C∗L,m| → 0 as m→∞.

Proof

The proof follows from Proposition 1 and the monotonicity of the function C.

4.7 Results

The VG process can be simulated by sequential sampling and bridge sampling. We presented

these generation algorithms in Section 4.2. These algorithms utilize the normal, gamma, and beta

distributions. The price of an European call option depends on the stock’s price at the maturity

only. Therefore, we only need to use one time step to simulate the VG process to estimate European

call options. However, for path dependent option prices, such as Asian or American options, more

51

than one time step is required in the simulations. In our numerical results, we use both one time

step and four time steps to calculate European call options. This allows us to use each of the

four algorithms presented in Section 4.2 to simulate VG processes and compare the results. The

parameters of the VG model are taken from an example in [58]. The results of using one time step

and four time steps are presented in Tables 4.1 and 4.2, respectively.

In Table 4.1 we used sequential sampling and the Gamma time-changed Brownian motion al-

gorithm, TCBM(S) (Algorithm 13), to generate the VG process using one time step. In this table,

we report the price of a European call option with various maturities (given in the first column),

when the underlying process is VG. The generation of the VG process with these particular param-

eters requires the generation of the following distributions: G(0.83, 0.3), G(1.67, 0.3), G(2.5, 0.3),

and G(3.33, 0.3) corresponding to T = 0.25, 0.5, 0.75, 1.0, as well as the normal distribution. Con-

sequently, our acceptance-rejection based approach to simulate the VG process uses Algorithms 6,

11, and 12. We call this approach AR MC and AR QMC, for the MC and QMC implementations

of these algorithms. In Table 4.1, methods Inverse MC and Inverse QMC generate gamma and

normal distributions using the inverse transformation method. In the AR QMC method, there

are two cases. If the maturity is T = 0.25, then we generate a 4-dimensional (randomized) QMC

vector (q1, q2, q3, q4). The first component is used to sample from the normal distribution using the

inverse transformation method, and the last three components are used to sample from the gamma

distribution using Algorithm 12. If T > 0.25, then we generate a 3-dimensional (randomized) QMC

vector, use its first component to sample from the normal distribution by the inverse transformation

method, and use the last two components to sample from the gamma distribution by Algorithm 11.

In the Inverse QMC method, to obtain one option price, we generate a 2-dimensional (random-

ized) QMC vector (q1, q2). The first component is used to sample from the normal distribution,

and the second component is used to sample from the gamma distribution. In Table 4.1 the second

column “Exact price” reports the analytical value of the option price (see [39]). These values are

taken from an example in [58].

In Table 4.2 we use four time steps to calculate the European call option and present the option

prices at time t = 0.5 (year), using four Algorithms (13, 14, 15, 16) to simulate the VG process.

For the sequential sampling algorithms (Algorithms 13 and 14) we need to generate variables from

the normal distribution and gamma distribution; for the bridge sampling algorithms (Algorithms

52

15 and 16) we need to generate variables from normal distribution, gamma distribution, and beta

distribution. The computed times recorded in Table 4.2 are the total times used for the four time

steps simulations.

For each maturity, we compute the option price by generating 10,000 stock price paths. We then

independently repeat this procedure 100 times. The sample standard deviation of the resulting 100

estimates is reported in Tables 4.1 and 4.2 (Std dev), together with the average of the 100 estimates

(Price), and the total computing time.

Table 4.1: Comparison of inverse and acceptance-rejection methods in pricing European
call options in the variance gamma model using one time step. The option parameters
are: θ = −0.1436, σ = 0.12136, ν = 0.3, initial stock price S0 = 100, strike price K = 101,
and risk free interest rate r = 0.1.

Maturity Exact
Inverse AR Inverse AR

MC MC QMC QMC

0.25
Std dev 0.039 0.035 0.002 0.003

3.47 Price 3.47 3.47 3.47 3.47
Time(s) 9.55 0.74 9.56 0.71

0.50
Std dev 0.062 0.063 0.002 0.005

6.24 Price 6.23 6.25 6.24 6.24
Time(s) 10.43 0.66 10.9 0.64

0.75
Std dev 0.079 0.093 0.003 0.007

8.69 Price 8.68 8.70 8.69 8.69
Time(s) 11.18 0.65 11.29 0.62

1.00
Std dev 0.106 0.103 0.003 0.009

10.98 Price 10.99 10.99 10.98 10.98
Time(s) 11.86 0.63 11.86 0.61

We make the following observations based on Tables 4.1 and 4.2:

1. The acceptance-rejection algorithms run faster than the inverse algorithms by factors between

9 and 25.

2. Both the acceptance-rejection method and the inverse method give results with sample stan-

dard deviations less than 0.01. These indicate that the estimation error of option prices would

be within 1 cent.

53

Table 4.2: Comparison of inverse and acceptance-rejection methods in pricing European
call options in the variance gamma model using four time steps. The option parameters
are: θ = −0.1436, σ = 0.12136, ν = 0.3, initial stock price S0 = 100, strike price K = 101,
and risk free interest rate r = 0.1.

Algorithm
Price at Inverse AR Inverse AR
t=0.5 MC MC QMC QMC

TCBM(S)
Std dev 3.5e-3 3.6e-3 1.3e-5 6.9e-4
Time(s) 38.16 2.99 38.11 2.90

DTGP(S)
Std dev 4.2e-3 3.1e-3 1.0e-5 8.3e-4
Time(s) 92.24 3.87 90.79 3.68

TCBM(B)
Std dev 4.7e-3 3.6e-3 3.6e-4 4.8e-4
Time(s) 17.99 2.50 17.87 2.47

DTGP(B)
Std dev 4.1e-3 2.7e-3 1.9e-5 8.4e-4
Time(s) 60.93 2.98 60.08 2.96

54

CHAPTER 5

HIDDEN MARKOV MODELS

5.1 Introduction

In many real-world problems, the states of a system can be modeled as a Markov chain in

which each state depends upon the previous state in a non-deterministic way. In hidden Markov

models (HMMs), these states are invisible while observations (the inputs of the model), which

depend on the states, are visible. An observation at time t of an HMM has a certain probability

distribution corresponding with a possible state. The mathematical foundations of HMMs were

developed by Baum and Petrie in 1966 [8]. Four years latter, in 1970, Baum and his colleagues

published a maximization method in which the parameters of HMMs are calibrated using a single

observation [9]. In 1983, Levinson, Rabiner and Sondhi [36] introduced a maximum likelihood

estimation method for HMMs with multiple observation training, assuming that all the observations

are independent. In 2000, Li et. al. [37] presented an HMM training for multiple observations

without the assumption of independence of observations. HMMs have applications in many fields,

including speech recognition, gene prediction, and machine translation. In this chapter, we will

briefly introduce the concepts of an HMM and its applications in the prediction of the economics

regimes and stock prices, using both single observation data and multiple observation data.

5.1.1 Elements of an hidden Markov model

We first introduce the basic elements of an hidden Markov model: O = {Ot, t = 1, 2, . . . , T} is

the observation sequence; Q = {qt, t = 1, 2, . . . , T} is the hidden state sequence; {Si, i = 1, 2, . . . , N}

are the possible values of each state qt; N is the number of states that can be taken at a given

time; M is the number of observation symbols per state, denoted by V = {vk, k = 1, 2, . . . ,M}.

The transition matrix A is defined as

A : aij = P (qt = Sj |qt−1 = Si), i, j = 1, 2, . . . , N.

55

Here, we consider A as time-independent. The initial probability of being in state (regime) Si is

given by

p : pi = P (q1 = Si), i = 1, 2, . . . , N.

The observation probability is given by the matrix B = (bi(k)), where

bi(k) = P (Ot = vk|qt = Si), i = 1, 2, ..., N ; k = 1, 2, . . . ,M.

If the observation probability assumes the Gaussian distribution then bi(Ot) = N (Ot, µi, σi),

where µi and σi are the mean and variance of the normal distribution corresponding to the state

Si, respectively. In summary, the parameters of an HMM are A,B, and p. For convenience, we use

a compact notation for the parameters, given by

λ ≡ {A,B, p}.

If the observations are distributed by the Gaussian distributions, the parameters are

λ ≡ {A,µ, σ p},

where µ and σ are vectors of means and variances of the Gaussian distributions, respectively.

5.1.2 Three problems

In order to apply hidden Markov models in real-world problems, there are three main problems

that must be solved. They are described as follows:

1. Given the observation data O = {Ot, t = 1, 2, . . . , T} and the model parameters λ = {A,B, p},
how do we compute the probability of observations, P (O|λ)?

2. Given the observation data O = {Ot, t = 1, 2, . . . , T} and the model parameters λ = {A,B, p},
how do we choose the best corresponding state sequence Q = {q1, q2, ..., qT }?

3. Given the observation data O = {Ot, t = 1, 2, . . . , T}, how do we calibrate HMM parameters,

λ = {A,B, p}, to maximize P (O|λ)?

These problems can be efficiently solved using the algorithms that will be described in Section 5.2.

56

5.2 Algorithms

In this section, we introduce algorithms known as the forward algorithm, backward algorithm,

Viterbi algorithm, and Baum-Welch algorithm. Either forward or backward algorithms [6, 7] can

be used for problem one while both of these algorithms are used in the Baum-Welch algorithm for

problem three. The Viterbi algorithm solves the problem two.

5.2.1 Forward algorithm

We define the joint probability function as αt(i) = P (O1, O2, ..., Ot, qt = Si|λ). We can calculate

αt(i) recursively. The probability of observation P (O|λ) is just the sum of the αT (i)′s.

Algorithm 18 The forward algorithm

1. Initialization: for i=1,2,..., N

αt=1(i) = pibi(O1).

2. Recursion: for t = 2, 3, . . . , T , and for j = 1, 2, . . . , N , compute

αt(j) =

[
N∑
i=1

αt−1(i)aij

]
bj(Ot).

3. Output:

P (O|λ) =
N∑
i=1

αT (i).

5.2.2 Backward Algorithm

Similar to the forward algorithm, we define the conditional probability βt(i) = P (Ot+1, Ot+2, .., OT |qt =

Si, λ), for i = 1, ..., N . Then we have the following recursive backward algorithm.

Algorithm 19 The backward algorithm

1. Initialization: for i = 1, ..., N

βT (i) = 1.

2. Recursion: for t = T − 1, T − 2, ..., 1, for i = 1, ..., N

βt(i) =
N∑
j=1

aijbj(Ot+1)βt+1(j).

3. Output:

P (O|λ) =

N∑
i=1

pibi(O1)β1(i).

57

5.2.3 The Viterbi algorithm

The Viterbi algorithm ([23], [61]) is used to solve the second problem of HMMs. The goal here

is to find the best sequence of states Q∗ when (O, λ) is given. While problem one has exactly one

solution, this problem has many possible solutions. Among these solutions, we need to find the one

with the “best fit”. We define:

δt(i) = max
q1,2,...,qt−1

P (q1, q2, . . . , qt = Si, O1, . . . , Ot|λ).

By induction we have

δt+1(j) = max
i

[δt(i)aij]bj(Ot+1).

Using δt(i) we can solve for the most likely state qt, at time t, as

qt = argmax1≤i≤N [δt(i)], 1 ≤ t ≤ T.

The Viterbi algorithm is given below.

Algorithm 20 Viterbi algorithm

1. Initialization:
δ1(j) = pjbj(O1), j = 1, 2, ..., N ;

φ1(j) = 0.

2. Recursion: for 2 ≤ t ≤ T , and 1 ≤ j ≤ N

δt(j) = maxi[δt−1(i)aij]bj(Ot+1)

φt(j) = argmaxi[δt1(i)aij]

3. Output:
q∗T = argmaxi[δT (i)]

q∗t = φt+1(q
∗
t+1), t = T − 1, . . . , 1

The forward algorithm, backward algorithm and Viterbi algorithm can be used for multiple ob-

servation data with minor changes. We present the most important algorithm, the Baum-Welch

algorithm, for two cases: single observation and multiple independent observations.

58

5.2.4 Baum-Welch algorithm

We turn to the solution for the third problem, which is the most difficult problem of HMMs

where we have to find the parameters λ = {A,µ, σ p} to maximize the probability P (O, λ) of an

observation data O = {O1, O2, . . . , OT }. Unfortunately, given an observation data, there is no

way to find the global maximized of P (O, λ). However, we can choose the parameters such that

P (O|λ) is locally maximized using the Baum-Welch iterative method [18]. In order to describe the

procedure, we define γt(i), the probability of being in state Si at time t, as:

γt(i) = P (qt = Si|O, λ) =
αt(i)βt(i)

P (O, λ)
=

αt(i)βt(i)∑N
i=1 αt(i)βt(i)

.

The probability of being in state Si at time t and state Sj at time t+ 1, ξt(i, j) is defined as:

ξt(i, j) = P (qt = Si, qt+1 = Sj |O, λ) =
αt(i)aijbj(Ot+1)βt+1(j)

P (O, λ)
.

Clearly,

γt(i) =

N∑
j=1

ξt(i, j).

Algorithm 21 Baum-Welch algorithm for one observation [56]

1. Initialization: input parameters λ, the tolerance tol, and a real number 4

2. Repeat until 4 < tol

• Calculate P (O, λ) using forward algorithm 18

• Calculate new parameters λ∗: for 1 ≤ i ≤ N

p∗i = γ1(i)

a∗ij =

∑T−1
t=1 ξt(i, j)∑T−1
t=1 γt(i)

, 1 ≤ j ≤ N

b∗i (k) =

∑T
t=1 |Ot=vkγt(i)∑T

t=1 γt(i)
, 1 ≤ k ≤M

• Calculate 4 = |P (O, λ∗)− P (O, λ)|

• Update λ = λ∗

3. Output: parameters λ.

59

If the observation probability b∗i (k), defined in Section 5.1.1, is Gaussian, the update parameters

are:

µ∗i =

∑T−1
t=1 γt(i)Ot∑T−1
t=1 γt(i)

σ∗i =

∑T
t=1 γt(i)(Ot − µi)(Ot − µi)′∑T

t=1 γt(i)
.

Algorithm 22 Baum-Welch for L independent observations O = (O(1), O(2), ..., O(L)) with matu-

rities T = (T (1), T (2), ..., T (L)) [37]

1. Initialization: input parameters λ, the tolerance tol, and a real number 4

2. Repeat until 4 < tol

• Calculate P (O, λ) = ΠL
l=1P (O(l)|λ) using the forward algorithm (18)

• Calculate new parameters λ∗ = {A∗, B∗, p∗}, for 1 ≤ i ≤ N

p∗i =
1

L

L∑
l=1

γ
(l)
1 (i)

a∗ij =

∑L
l=1

∑T (l)−1
t=1 ξ

(l)
t (i, j)∑L

l=1

∑T (l)−1
t=1 γ

(l)
t (i)

, 1 ≤ j ≤ N

b∗i (k) =

∑L
l=1

∑T (l)

t=1 |O(l)
t =v

(l)
k

γ
(l)
t (i)∑L

l=1

∑T (l)

t=1 γ
(l)
t (i)

, 1 ≤ k ≤M

• Calculate 4 = |P (O, λ∗)− P (O, λ)|

• Update

λ = λ∗.

3. Output: parameters λ.

If the observation probability b∗i (k), defined in Section 5.1.1, is Gaussian, the update parameters

are:

µ∗i =

∑L
l=1

∑T (l)−1
t=1 γ

(l)
t (i)O

(l)
t∑L

l=1

∑T (l)−1
t=1 γ

(l)
t (i)

σ∗i =

∑L
l=1

∑T (l)

t=1 γ
(l)
t (i)(Ot − µ(l)i)(O

(l)
t − µ

(l)
i)′∑L

l=1

∑T (l)

t=1 γ
(l)
t (i)

.

60

5.3 Using HMMs to Predict Economics Regimes

In this section we will discuss how to use HMMs to predict economics regimes. We will use

both HMMs for single observation data, [56] using Algorithm 21, and multiple observation data,

[37] using Algorithm 22, to predict economics trends. We use two regimes and assume that the

distributions corresponding to the two regimes are two normal distributions with means and vari-

ances (µ, σ) = (µi, σi), i = 1, 2. Regime 1 represents the Bull market and regime 2 represents the

Bear market. We assume regime 2 is the regime with lower µi/σi, i = 1, 2. First, we need to choose

the appropriate economics indicators for the model. There are several economics indicators that

we will choose for this work: Inflation (CPI), Credit Index, Yield Curve, Commodity, and Dow

Jones Industrial Average. We use monthly percentage changes from February 1947 through June

2013 of the economics indicators. Second, we use the fixed period of historical data (48 months)

of the economics indicators above to calibrate the model parameters λ = {A,µ, σ, p} using the

Baum-Welch algorithm [56], [37]. Then the final step is to use the obtained parameters to predict

the corresponding hidden regimes and predict the probabilities of upcoming regimes (Bull or Bear

market). After each prediction, we update the data by dropping off the oldest month in the past

and adding the most recent month to keep the same length of time periods. We also update param-

eters and repeat the prediction process. We call this method a “moving window” method based on

the approach of by Zhang [67] , Rao and Hong [57].

We use HMMs to predict the probability of being in the Bear market for the US economics

from October 2006 to May 2013 using both single observation and multiple observations. In Figure

5.1 we use the Dow Jones Industrial Average (DJIA) and in Figure 5.2, we use the inflation rate

(CPI). Figures 5.1 and 5.2 show that HMM captures the economics crisis from the end of 2008 to

2009: the probabilities of being in the Bear market at that time are almost 1. We see that different

economics indicators give different predictions for economics regimes at some points in the time

period. However, both figures suggest that HMM can predict economics crisis using either the stock

indicator or the inflation indicator. In Figure 5.3 we use HMM with multiple observation data to

predict the economic regimes. We assume that the economics indicators are independent.

61

5.4 Using HMMs to Predict Stock Prices

In this section we will use HMMs to predict the daily stock prices. We predict one year daily

stock prices, and we fix the length of the “moving window” to 252 days (one business year). The

stock price prediction follows the three steps of economics regime prediction that was discussed in

the previous section. However, in the final step, we need to do more work in order to predict stock

prices. In the economics regime prediction, after training the model, we use the transition matrix

to predict the probability of being in the Bear market. Now suppose we want to predict tomorrow’s

stock price. After training the model parameters we calculate the probability of observation for

today and move the “moving window” back to the past, day by day, to find the day in the past

that has the closest probability of observation data with today. Then we calculate the difference

between that day to the day after. Thus tomorrow’s stock closing price forecast is established by

adding the above difference to today’s closing price. This prediction approach is based on a paper

of Hassan and Nath [29].

We present results of using HMMs to predict S&P500 closing price for one year from July 2012

to July 2013 in Figures 5.4 and 5.5. In Figure 5.4, we use only the “close” price while in Figure 5.5,

we use “close”, “open”, “low”, and “high”, to predict the closing prices. We compare the results by

calculating the relative errors of the two estimations. The HMM using multiple observations has

a relative error of 0.00703, which is smaller than the error of 0.00824 when using one observation

data. The results show that HMMs can be used to predict stock prices; the predictions follow the

trends of the actual prices. We then use the HMM algorithm in stock trading. We choose six

stocks in the market to trade with equal weights: Google Inc. (GOOG), Ford Motor Company (F),

Apple Inc. (AAPL), SPDR S&P500 ETF Trust (SPY), and General Electric Company (GE). We

use HMM for history prices of each stock to predict the stock prices for the year December 2012

to December 2013. If HMM predicts that the stock price will move up tomorrow, for example, we

will buy today and sell tomorrow, assuming that we buy and sell with close prices. Table 5.1 shows

that we make about 75% earnings after trading these six stocks for one year without transaction

fees.

62

Table 5.1: One year daily stock trading portfolio from December 2012 to December 2013

Symbol Initial Investment ($) Earning ($) Earning %

SPY 9,000.00 2050.66 22.79

GOOG 30,000.00 29,036.4 96.79

FORD 250.00 10.10 4.04

AAPL 950.00 19.06 2.01

GE 1,700.00 490.00 28.82

TOTAL 41,900.00 31,606.22 75.43

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●
●

●

●

●

●

●

●

●

●

●●
●

●●●●●
●

●●

●

●

●
●●●●

●

●●

●

●

●

●
●●

●

●

●

●
●

●
●

●●●●●

HMM Forecasts Bear Market using DJIA (monthly 10/2006−05/2013)

Time

2007 2008 2009 2010 2011 2012 2013

−
3

−
2

−
1

0
1

2

●

DJIA
Probabilities of Bear Market

Figure 5.1: Forecast probabilities of being in the Bear market using DJIA indicator

63

●

●●●●●
●●●●

●●●

●
●●●●●●●●●●●●

●

●●●●●●●●●●●

●

●●●●●●
●

●

●
●●●●●●

●

●

●●●●●●●●●●
●

●

●●●●●●●●●●●●

HMM Forecasts Bear Market using CPI (monthly 10/2006−05/2013)

Time

2007 2008 2009 2010 2011 2012 2013

−
2

−
1

0
1

2

●

CPI
Probabilities of Bear Market

Figure 5.2: Forecast probabilities of being in the Bear market using CPI indicator

64

●●●
●●

●●●

●

●

●

●
●

●
●

●

●

●
●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●
●

●
●

●

●

●●

●
●

●
●

●●●
●

●

●
●

●
●

●●●●

●
●

●●●
●

●

●●
●●

●
●

●●
●●●●

●●●

HMM Forecasts of Bear Market (monthly 10/2006−5/2013)

Time

N
or

m
al

iz
ed

 d
at

a

2007 2008 2009 2010 2011 2012 2013

−
3

−
2

−
1

0
1

2

●

DJIA
Credit Index
Yield Curve
Commodity
Probabilities of Bear Market

Figure 5.3: Forecast probabilities of being in the Bear market using multiple observations

65

●

●
●

●

●
●

●●●
●●●●

●
●●

●●

●

●●●●

●

●●●

●

●

●
●
●

●

●
●●●●●

●

●

●

●

●
●●

●

●●
●

●

●●
●

●

●

●
●

●●

●
●
●●●

●

●
●

●

●

●
●●

●

●
●

●

●●
●

●
●

●

●

●●

●
●
●
●
●●

●●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●
●
●
●

●●●●●

●
●

●
●●

●
●

●

●
●

●

●

●●●

●●
●●●●

●

●

●

●

●

●

●●
●

●

●●
●

●
●
●●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●●
●

●
●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●●

●

●
●

●
●

●
●
●
●

●
●●

●●●

0 50 100 150 200 250

13
00

14
00

15
00

16
00

17
00

S&P500 Using Close Prices 7/30/2012−7/31/2013

Times

S
&

P
50

0
P

ric
es

● True price
Estimated price

Figure 5.4: Forecast S&P500 using “close” prices

66

●

●
●

●

●
●

●●●
●●●●

●
●●

●●

●

●●●●

●

●●●

●

●

●
●
●

●

●
●●●●●

●

●

●

●

●
●●

●

●●
●

●

●●
●

●

●

●
●

●●

●
●
●●●

●

●
●

●

●

●
●●

●

●
●

●

●●
●

●
●

●

●

●●

●
●
●
●
●●

●●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●
●
●
●

●●●●●

●
●

●
●●

●
●

●

●
●

●

●

●●●

●●
●●●●

●

●

●

●

●

●

●●
●

●

●●
●

●
●
●●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●●
●

●
●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●●

●

●
●

●
●

●
●
●
●

●
●●

●●●

0 50 100 150 200 250

13
00

14
00

15
00

16
00

17
00

S&P500 Using Close−Open−High−Low 7/30/2012−7/31/2013

Times

S
&

P
50

0
P

ric
es

● True price
Estimated price

Figure 5.5: Forecast S&P500 using “open”, “close”, “high”, and “low” prices

67

CHAPTER 6

CONCLUSION

The use of low-discrepancy sequences in computational problems, especially in numerical integra-

tion, is increasing mainly because of the faster convergence rates these sequences provide, com-

pared to using pseudorandom sequences. For example, in the application of derivative pricing

from computational finance, this faster rate of convergence is quite useful, and some well-known

low-discrepancy sequences have taken their place in the numerical methods toolbox of financial

engineers. Currently, the main method for transforming low-discrepancy sequences to nonuniform

distributions is the inverse transformation technique. However, this technique can be computation-

ally expensive for complicated distributions. The acceptance-rejection technique was developed

precisely for this reason for the pseudorandom sequences.

In this dissertation, we introduced an acceptance-rejection algorithm for the quasi-Monte Carlo

method. We proved a convergence result for the algorithm and investigated its error bounds.

We constructed several QMC acceptance-rejection algorithms to generate variables from different

distributions. Our numerical results showed that the QMC acceptance-rejection method gave bet-

ter results compared to the other methods such as ziggurat, smoothing, and inverse method, for

the distributions considered in this dissertation. The availability of acceptance-rejection for low-

discrepancy sequences significantly increases the scope of applications where quasi-Monte Carlo

methods can improve traditional Monte Carlo.

We also investigated the applications of Hidden Markov Models (HMM) in predicting economic

regimes and stock prices. We used HMM for both single and multiple observation data, assuming

that the observations are independent. We used a “moving window” technique with a fixed time

length period in predictions. Numerical results show that HMM using multiple observation data

gave more accurate predictions than using single observation data only. To test our HMM stock pre-

diction algorithm, we developed a simple trading strategy using the algorithm and obtained profits

about 75% in one historical scenario. We also observed that HMM regime prediction algorithm

was able to predict the economic crisis in 2008-2009.

68

BIBLIOGRAPHY

[1] E. Atanassov. On the discrepancy of the Halton sequences. Math. Balkanica, 18.1-2:15–32,
2004.

[2] A. N. Avramidis and P. L’Ecuyer. Efficient Monte Carlo and quasi-Monte Carlo option pricing
under the Variance-Gammma model. Management Science, 52:1930–1934, 2006.

[3] A.N. Avramidis, P. L’Ecuyer, and P.A. Tremblay. Efficient simulation of gamma and variance-
gamma processes. Winter Simulation Conference, 42:85–99, 1983.

[4] R.E. Caflisch B. Moskowitz. Smoothness and dimension reduction in quasi-Monte Carlo meth-
ods. Math. Comput. Modelling, 23:37–54, 1996.

[5] G. Bakshi, C. Cao, and Z. Chen. Empirical performance of alternative option pricing models.
Journal of Finance, 52:20032049, 1997.

[6] L. E. Baum and J. A. Egon. An inequality with applications to statistical estiation for prob-
abilistic functions of Markov process and to a model for ecology. Bull. Amer. Meteorol. Soc,
73:360–363, 1967.

[7] L. E. Baum and G. R. Sell. Growth functions for transformations on manifolds. Pac. J. Math,
27.2:211–227, 1968.

[8] L.E. Baum and T. Petrie. Statistical inference for probabilistic functions of finite state Markov
chains. The Annals of Mathematical Statistics, 37:1554–1563, 1966.

[9] L.E. Baum, T. Petrie, G. Soules, and N. Weiss. A maximization technique occurring in the
statistical analysis of probabilistic functions of Markov chains. The Annals of Mathematical
Statistics, 41(1):164–171, 1970.

[10] D. Bayazit. Sensitivity analysis of options under Lévy processes via Malliavin calculus. PhD
thesis, Florida State University, 2010.

[11] F. Black and M. Scholes. The Pricing of Options and Corporate Liabilities. Journal of Political
Economy, 81(3):637654, 1973.

[12] P. Carr and D. B. Madan. Option valuation using the fast fourier transform. Journal of
Computational Finance, 1999.

[13] R.C.H. Cheng. The generation of gamma variables with non-integral shape parameter. Applied
Statistics, 26(1):71–75, 1977.

69

[14] G.W. Cran, K.J. Martin, and G.E. Thomas. Remark AS R19 and Algorithm AS 109: a remark
on Algorithms: AS 63: the incomplete beta integral AS 64: inverse of the incomplete beta
function ratio. J. R. Stat. Soc. Ser. C. Appl. Stat., 26(1):111–114, 1977.

[15] R.B. D’Agostino and M.A. Stephens. Goodness-of-fit techniques. Marcel Dekker, New York,
1986.

[16] G. Ökten and W. Eastman. Randomized quasi-Monte Carlo methods in pricing securities.
Journal of Economic Dynamics &Control, 28, 2004.

[17] F. Delbaen and W. Schachermayer. A general version of the fundamental theorem of asset
pricing. Springer-Verlag, 1994.

[18] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data
via EM algorithm. J. Roy. Stat. Soc, 39.1:1–38, 1977.

[19] D. Deville. On Lévy processes for option pricing : numerical methods and calibration to index
options. PhD thesis, University of Politecnica, Delle Marche, 2008.

[20] H. Faure. Discrpance de suites associes un systme de numration (en dimension un). Acta
Arith, 1982.

[21] H. Faure and C. Lemieux. Improvements on the star discrepancy of (t, s)-sequences. Acta
Arith., 151.1:61–78, 2012.

[22] G. S. Fishman. Monte Carlo concepts, algorithm and applications. Springer Series in Opera-
tions Research, 1996.

[23] G. D. Forney. The Viterbi algorithm. IEEE, 61:268–278, 1973.

[24] M. C. Fu. Variance-Gamma and Monte Carlo. Unpublished paper, available online at
www.rhsmith.umd.edu/faculty/mfu/fu files/Fu07.pdf, 2007.

[25] H. U. Gerber and E. S. W. Shiu. Option pricing by Essher transforms. Transactions of Society
of Actualizes, 46, 1994.

[26] P. Glasserman. Monte Carlo methods in financial engineering. Springer Science, 2004.

[27] A. Göncü and G. Ökten. Generating low-discrepancy sequences from the normal distribution:
Box-Muller or inverse transformation? Math. Comput. Modelling, 53, 2011.

[28] J.H. Halton. On the efficiency of certain quasi-random sequences of points in evaluating multi-
dimensional integrals. Numer. Math, 1960.

70

[29] Md. R. Hassan and B. Nath. Stock market forecasting using hidden Markov models: A new
approach. IEEE, 2005.

[30] C. Joy, P. P. Boyle, and K. S. Tan. Quasi-Monte Carlo methods in numerical finance. Man-
agement Science, 1996.

[31] L. Kuipers and H. Niederreiter. Uniform distribution of sequences. Dover Publications, 2006.

[32] J.P. Lambert. Quasi-Monte Carlo, low discrepancy sequences, and ergodic transformations.
Journal of Computational and Applied Mathematics, 1985.

[33] B. Lapeyre and G. Pagès. Families de suites d discrépance faible obtenues par itération de
transformations de [0, 1]. C.R. Acad. Sci. Paris Sr. I Math., pages 507–509, 1989.

[34] C.L. Lau. Algorithm AS 147: A simple series for the incomplete gamma integral. Applied
Statistics, 29:113–114, 1980.

[35] P.H.W. Leong, G. Zhang, D-U Lee, W. Luk, and J.D. Villasenor. A comment on the imple-
mentation of the ziggurat method. Journal of Statistical Software, 12:1–4, 2005.

[36] S.E. Levinson, L.R. Rabiner, and M.M. Sondhi. An introduction to the application of the
theory of probabilistic functions of Markov process to automatic speech recognition. Bell
System Technical Journal, 62(4):1035–1074, 1983.

[37] X. Li, M. Parizeau, and R. Plamondon. Training hidden Markov models with multiple obser-
vations a combinatorial method. IEEE Transactions on PAMI, 22(4):371–377, 2000.

[38] D. B. Madan, P. Carr, and E. C. Chang. The variance gamma process and option pricing.
European Finance Review, 2:79105, 1998.

[39] D. B. Madan and E. Seneta. The Variance-Gammma (VG) model for share market returns.
Journal of Business, 63:511–524, 1990.

[40] K. L. Majumder and G.P. Bhattacharjee. Algorithm AS 63: The incomplete beta integral. J.
R. Stat. Soc. Ser. C. Appl. Stat., 22(3):409–411, 1973.

[41] G. Marsaglia. Generating a variable from the tail of the normal distribution. Boeing Scientific
Research Laboratories, 1963.

[42] G. Marsaglia and W. W. Tsang. The ziggurat method for generating random variables. Journal
of Statistical Software, Vol. 5, No. 8, 2000.

[43] M. Matsumoto and T. Nishimura. Mersenne twister: A 623-dimensionally equidistributed
uniform pseudorandom number generator. ACM Transactions on Modeling and Computer
Simulations, 8(1):3–30, 1998.

71

[44] A. Mcleod. Algorithm AS 245: A robust and reliable algorithm for the logarithm of the gamma
function. J. R. Stat. Soc. Ser. C. Appl. Stat., 38(2):397–402, 1989.

[45] H. G. Meijer. The discrepancy of a adic sequence. Indag. Math, 1968.

[46] H. Niederreiter. Random number generation and quasi-Monte Carlo methods. SIAM, Philadel-
phia, 1992.

[47] H. Niederreiter. Error bound for quasi-Monte Carlo integration with uniform point sets. Jour-
nal of Computational and Applied Mathematics, 2003.

[48] H. Niederreiter and R. F. Tichy. Beiträge zur diskrepanz bezuglich gewichteter mittel.
Manuscripta Math.

[49] J. R. Norris. Markov chains. Cambridge University Press, 1997.

[50] G. Ökten. Error reduction techniques in quasi-Monte Carlo integration. Math. Comput.
Modelling, 30:61–69, 1999.

[51] G. Ökten. Generalized von Neumann-Kakutani transformation and random-start scrambled
Halton sequences. J. Complexity, 25(4):318–331, 2009.

[52] G. Ökten and A. Göncü. Uniform point sets and the collision test. J. Comput. Appl. Math.,
259:798–804, 2013.

[53] A. B. Owen. Randomly permuted (t,m, s)-nets and (t, s)-sequences. In H.Niederreiter and
P.J.-S. Shiue, editors, Monte Carlo and Quasi-Monte Carlo in Scientic Computing, Lecture
Notes in Statistics, Vol. 106, 1995.

[54] A. B. Owen. Scrambled net variance for integrals of smooth functions. Annals of Statistics,
pages 1541–1562, 1997.

[55] A. B. Owen. Multidimensional variation for quasi-Monte Carlo. The World Scientific Publisher,
pages 49–74, 2005.

[56] L. R. Rabiner. A tutorial on hidden Markov models and selected applications in speech
recognition. IEEE, 77.2, 1989.

[57] S. Rao and J. Hong. Analysis of hidden Markov models and support vector machines in
financial applications. University of California at Berkeley, 2010.

[58] C. Ribeiro and N. Webber. Valuing path dependent options in the variance-gamma model by
Monte Carlo with a variance gamma bridge. working paper, WP02-04, 2002.

[59] S. M. Ross. Simulation. Academic Press, 1997.

72

[60] J. Struckmeier. Fast generation of low-discrepancy sequences. Journal of Computational and
Applied Mathematics, 61, 1995.

[61] A. J. Viterbi. Error bounds for convolutional codes and an asymptotically optimal decoding
algorithm. IEEE Trans. Informat. Theory, IT-13:260–269, 1967.

[62] J. Wang. The multivariate variance gamma process and its applications in multi asset option
pricing. PhD thesis, University of Maryland, College Park, 2009.

[63] X. Wang. Improving the rejection sampling method in quasi-Monte Carlo methods. Journal
of Computational and Applied Mathematics 114, 1999.

[64] X. Wang and F. J. Hickernell. Randomized Halton sequences. Mathematical and Computer
Modelling 32, 2001.

[65] H. Wozniakowski. Average case complexity of multivariate integration. Bull. Amer. Math.
Soc, 1991.

[66] E. J. Yoo. Variance gamma pricing of American futures options. PhD thesis, Florida State
University, 2008.

[67] Y. Zhang. Prediction of financial time series with hidden Markov models. MS thesis, Simon
Fraser University, 2004.

73

BIOGRAPHICAL SKETCH

Nguyet Nguyen

EDUCATION

• FLORIDA STATE UNIVERSITY TALLAHASSEE, FL, USA

Doctor of Philosophy, Financial Mathematics 07/2014 (expected)

• FLORIDA STATE UNIVERSITY TALLAHASSEE, FL, USA

Master of Science, Financial Mathematics 12/2011

• HANOI NATIONAL UNIVERSITY OF EDUCATION HANOI, VIETNAM

Master of Science, Mathematics 09/2002

• HANOI NATIONAL UNIVERSITY OF EDUCATION HANOI, VIETNAM

Bachelor of Science, Mathematical Education 06/1998

WORKING EXPERIENCE

• FLORIDA STATE UNIVERSITY, DEPARTMENT OF MATHEMATICS, TALLAHASSEE,

FL, USA

Senior Teaching Assistant: Spring 2013-Present

– Calculus with Analytic Geometry I Fall 2013

– Pre-Calculus Algebra Spring 2013 & Spring 2014

Teaching Assistant:

– Calculus with Analytic Geometry I Fall 2012

– Calculus II Spring 2012 & Fall 2011

– College Algebra Fall 2010, Spring 2010, & Summer 2011

• NGUYEN TAT THANH HIGH SCHOOL, HNUE HANOI, VIETNAM

Mathematics Teacher: 08/1998 - 12/2005

Director of the Division of Math Teachers: 2003-2005

• NED DAVIS RESEARCH GROUP VENICE, FL

Quantitative Research Intern: 06/2013-08/2013

Quantitative Research Intern: 05/2012-08/2012

74

OTHER TRAINING AND CERTIFICATIONS

• 2013 Program for Instructional Excellence (PIE) Certificate by the Graduate School of Florida

State University TALLAHASSEE, FL, 09/ 2013

• Official Statement of Status of Eligibility for a Florida Educators Certificate by the Florida

Department of Education TALLAHASSEE, FL, 05/ 2007

• Certification of Attendance of the Joint Training of Pedagogical Interactive by Université du

Québec à Trois-Rivières (Canada) and HNUE (Vietnam) HANOI, VIETNAM, 2005

• Attended the Annual Training Courses in Child Psychology for Advisers for Children by

UNICEF and Department of Psychology, HNUE HANOI, VIETNAM 2003 & 2004

PUBLICATIONS

• Nguyet Nguyen and Giray Ökten, Acceptance-rejection method for low-discrepancy sequences,

SIAM Journal on Scientific Computing, under review.

CONFERENCES

• The Eleventh International Conference on Monte Carlo and Quasi-Monte Carlo Methods in

Scientific Computing, KU Leuven, Belgium, (accepted abstract) 04/2014

“Efficient Implementation of The Variance Gamma Model Using a QMC Acceptance-Rejection

Algorithm”

• The 2014 Joint Mathematical Meeting, Baltimore, MD 01/2014

“Hidden Markov Model for High Frequency Data”

• The 5th Annual Modeling High Frequency Data in Finance Conference, Hoboken, NJ 10/

2013

“Hidden Markov Model for High Frequency Data”

• The American Mathematical Society Section Meeting, University of Louisville, Louisville, KY

10/2013

• The Mathematical Association of America Florida Chapter Local Meeting, University of West

Florida, Pensacola, FL 11/2012

“Applying Quasi-Monte Carlo for Acceptance-Rejection Algorithm”

HONORS AND AWARDS

• First place in the poster competition of the 15th and 16th annual Financial Math Festivals,

Florida State University, FL 02/2013 and 02/2014

75

• National Science Foundation (NSF) travel grant to attend the Eleventh International Con-

ference on Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing (MCQMC

2014), Leuven, Belgium 11/2013

• American Mathematical Society (AMS) travel grant to attend the 2014 Joint Mathematical

Meeting, Baltimore, MD 11/2013

• Pi Mu Epsilon, National Honorary Mathematics society, Florida Beta Chapter: recognition

of superior achievement in the field of mathematics. Member since 2011

• AMS travel grant to attend the AMS Section Meeting, University of Louisville, KY 10/2013

• Douglas Peterson Vietnamese Scholarship Award, Florida State University, FL 09/2011 &

08/2013

• Ermine M. Owenby Jr. Fund to Promote Excellence, Florida State University, FL 11/2012

& 11/2013

• Teaching Assistant, Florida State University, USA 08/2010-Present

• Annual fellowship for graduate students, Department of Mathematics, Hanoi National Uni-

versity of Education, Vietnam 1998-2002

• Third prize in algebra, nationwide contest for undergraduate students of Vietnam 1996

• Annual fellowship for excellent undergraduate students, Department of Mathematics, Hanoi

National University of Education, Vietnam 1994-1998

76

